
BEN DROR ET AL.: LAYER FOLDING 1

Layer Folding: Neural Network Depth
Reduction using Activation Linearization

Amir Ben Dror∗

amir.b@samsung.com

Niv Zehngut∗

niv.z@samsung.com

Avraham Raviv∗

avraham.r@partner.samsung.com

Evgeny Artyomov
evgeny.a@samsung.com

Ran Vitek
ran.vitek@samsung.com

Samsung Israel R&D Center
Tel Aviv
Israel

Abstract

Despite the increasing prevalence of deep neural networks, their applicability in
resource-constrained devices is limited due to their computational load. While mod-
ern devices exhibit a high level of parallelism, real-time latency is still highly dependent
on networks’ depth. Although recent works show that below a certain depth, the width of
shallower networks must grow exponentially, we presume that neural networks typically
exceed this minimal depth to accelerate convergence and incrementally increase accu-
racy. This motivates us to transform pre-trained deep networks that already exploit such
advantages into shallower forms. We propose a method that learns whether non-linear
activations can be removed, allowing to fold consecutive linear layers into one. We use
our method to provide more efficient alternatives to MobileNet and EfficientNet archi-
tectures on the ImageNet classification task. We release our code and trained models at
https://github.com/LayerFolding/Layer-Folding.

1 Introduction
Multiple works have studied the relation between expressiveness and neural networks’ depth.
Early works [1, 6, 31, 41] showed that some deep neural networks cannot be represented by
shallower networks unless those networks are exponentially wider. This exponential param-
eter growth of shallow networks compared to deeper ones representing the same function,
has been widely studied [2, 5, 23, 33, 34, 37, 47]. While these findings suggest that a
certain depth is required to preserve performance on a given task, many architectures are
typically deeper than that. The role of the added layers can be viewed by the unrolled it-
erative estimation [9] – a group of successive layers iteratively refine their estimates of the

c© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

∗ Equal Contribution.

Citation
Citation
{Bianchini and Scarselli} 2014

Citation
Citation
{Delalleau and Bengio} 2011

Citation
Citation
{Pascanu, Mont{ú}far, and Bengio} 2014

Citation
Citation
{Telgarsky} 2016

Citation
Citation
{Bolcskei, Grohs, Kutyniok, and Petersen} 2019

Citation
Citation
{Daniely} 2017

Citation
Citation
{Liang and Srikant} 2017

Citation
Citation
{Petersen and Voigtlaender} 2018

Citation
Citation
{Poggio, Mhaskar, Rosasco, Miranda, and Liao} 2017

Citation
Citation
{Safran and Shamir} 2017

Citation
Citation
{Yarotsky} 2017

Citation
Citation
{Greff, Srivastava, and Schmidhuber} 2017

https://github.com/LayerFolding/Layer-Folding

2 BEN DROR ET AL.: LAYER FOLDING

ReLU

ReLU

...
...

ReLU

ReLU

...
...

ReLU

...
...

ReLU

...
...

(a) (b) (c) (d)

Figure 1: Illustration of our method. We replace activations of a given network F (a) with
parametric activations according to Equation (1), resulting in Fα (b). We fine-tune Fα with
the loss provided in Equation (4). When training converges, we remove activations whose
α ≈ 1 (c). We fold consecutive linear operations, resulting in a shallower network F f old (d).
We then fine-tune F f old .

same features instead of computing entirely new representations. Hence, some layers in
deep neural networks can be regarded as crucial for depth separation while others for refin-
ing representations and facilitating optimization, implying varying contribution to networks’
expressiveness. Such observation plays an important role when efficiency is additionally
considered as an optimization objective. We argue that some networks wield more layers
than necessary, suggesting that their expressive power can be maintained with wider-but-
shallower networks. This has been supported by recent works [17, 32] showing that deeper
networks have a simplicity bias and encourage low-rank solutions. Shallower networks are
particularly advantageous for hardware accelerators and GPUs that leverage intra-layer par-
allelism and suffer from inter-layer computational overhead.

We propose to learn which activations can be removed without incurring a significant
accuracy degradation. This allows us to merge adjacent linear layers, and in turn, transform
deep networks into shallow ones. Similarly to pruning methods [10, 11, 21] we focus on
optimizing a pre-trained network. This allows the network to leverage the rich representa-
tions and local minimum obtained by the deeper network form and distill it to its shallow
form. Recent pruning methods [42, 48] attenuate neurons during a fine-tuning phase, gradu-
ally reducing the network’s size while allowing it to compensate. However, when applied to
layer pruning, these methods force the network to gradually adopt new intermediate repre-
sentations. The deep and shallow forms of a network may reside in local minima, for which
traversing from one another may be challenging by gradient descent. In contrast, our opti-
mization method maintains the intermediate representations of the original deep network dur-
ing the fine-tuning phase. Recently, Ding et al. [7] suggested a similar decoupling between
training-time architecture and inference-time architecture via structural re-parametrization
to leverage parallel connections during training.

In line with other optimization methods, we focus on Convolutional Neural Networks
(CNNs) for their prevalence in compute-intensive vision applications. We learn to remove
non-linear activations between consecutive convolution layers, allowing their functionality-
preserving merge. For layers with spatial kernels of size k× k, this result in a larger (2k−

Citation
Citation
{Huh, Mobahi, Zhang, Cheung, Agrawal, and Isola} 2021

Citation
Citation
{P{é}rez, Camargo, and Louis} 2018

Citation
Citation
{Han, Pool, Tran, and Dally} 2015

Citation
Citation
{Hassibi and Stork} 1993

Citation
Citation
{LeCun, Denker, and Solla} 1990

Citation
Citation
{Tiwari, Bamba, Chavan, and Gupta} 2021

Citation
Citation
{Zhuang, Zhang, Huang, Zeng, Shuang, and Li} 2020

Citation
Citation
{Ding, Zhang, Ma, Han, Ding, and Sun} 2021

BEN DROR ET AL.: LAYER FOLDING 3

1)× (2k− 1) kernel. We show how such a transformation, in spite of the added FLOPs,
may reduce latency on different hardware devices. Interestingly, this comes in reverse of
the common preference of multiple smaller kernels (e.g., 3×3) than fewer larger ones (e.g.,
5×5) which originated in [39].

Merging multiple convolution layers may either increase or decrease the total number
of FLOPs. It depends on the specific structure and width of those layers. Inverted bottle-
neck [38] is a commonly used building block for efficient networks. Merging layers of this
block into a single convolution layer may cut FLOPs in half. We experiment on this archi-
tecture to show such potential gain. The fact that many recent works [14, 29, 40, 43, 45]
have relied on neural architectures composed of inverted bottlenecks to achieve prominent
performance over the ImageNet classification task [36] highlights the attractiveness of our
method. We also show that our depth reduction method may be used jointly with channel
pruning methods, improving efficiency even further.

Our contributions are as follows:

1. We propose Layer Folding, a novel method to reduce the depth of a neural network
and fold consecutive linear layers by removing the non-linear activations that separate
them. We show how our method facilitates optimization by maintaining the interme-
diate representations of the original depth.

2. We apply our method on efficient mobile networks over the ImageNet classification
task [36] and improve their latency even further without a significant impact on their
accuracy.

3. We perform extensive analysis over different network architectures and classification
tasks and show how accuracy degrades as depth decreases. In particular, we show that
networks’ depth can be reduced with minimal accuracy drop.

2 Related Work

Pruning. Many pruning methods were proposed in order to improve a pre-trained network
efficiency while maintaining its accuracy. Most pruning methods focus on pruning filters
from each layer in a given network. Some methods allow pruning entire layers, in a way that
resembles our focus on depth reduction. Chen and Zhao [3] proposed to estimate whether
layers can be replaced with linear layers, sharing a similar motivation to ours. In contrast,
they optimize layers independently while we train a network as a whole in an end-to-end
manner, allowing layers to compensate for those which are removed. Wang et al. [44] pro-
posed to remove blocks that have low discriminative power when compared to preceding
blocks. As opposed to our method, the targeted blocks are abruptly removed from the net-
work in a non-smooth manner. Neill et al. [30] proposed to remove layers based on layer
similarity. They also empirically showed that there is a bound on the amount of compression
that can be achieved before an exponential degradation in performance. We draw a differ-
ent conclusion and show that such a bound originates from a network’s depth rather than
its size (i.e., number of parameters). Our work is in line with pruning methods that per-
form fine-tuning with additional loss which encourage more efficient networks, such as [46].
However, while such methods require the network to learn new intermediate representations,
we maintain the rich representation space of the original network.

Citation
Citation
{Simonyan and Zisserman} 2015

Citation
Citation
{Sandler, Howard, Zhu, Zhmoginov, and Chen} 2018

Citation
Citation
{Howard, Sandler, Chu, Chen, Chen, Tan, Wang, Zhu, Pang, Vasudevan, etprotect unhbox voidb@x penalty @M {}al.} 2019

Citation
Citation
{Nayman, Aflalo, Noy, and Zelnik-Manor} 2021

Citation
Citation
{Stamoulis, Ding, Wang, Lymberopoulos, Priyantha, Liu, and Marculescu} 2019

Citation
Citation
{Wan, Dai, Zhang, He, Tian, Xie, Wu, Yu, Xu, Chen, etprotect unhbox voidb@x penalty @M {}al.} 2020

Citation
Citation
{Wu, Dai, Zhang, Wang, Sun, Wu, Tian, Vajda, Jia, and Keutzer} 2019

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2015

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2015

Citation
Citation
{Chen and Zhao} 2018

Citation
Citation
{Wang, Zhao, Chen, Hu, Cai, and Liu} 2019

Citation
Citation
{Neill, Steeg, and Galstyan} 2020

Citation
Citation
{Xu, Cao, Shang, Sun, and Li} 2020

4 BEN DROR ET AL.: LAYER FOLDING

Neural Architecture Search (NAS). As high-capacity and high-performing neural net-
works became feasible to train, designing efficient architectures has gained high interest.
Early works have suggested various design principles, such as adopting multiple smaller
spatial kernels instead of larger ones [39], leveraging residual connections [13], decompos-
ing weight matrices [15] and utilizing bottlenecks [38]. Current top-performing architectures
are found using NAS. Since the search space spanned by possible architectures is intractable,
existing methods use reinforcement learning [49], genetic algorithms [35], differentiable
search [25] and other methods [19, 24, 27] to traverse it. Similarly to our method, differ-
entiable methods learn architectural paths that allows the removal of entire layers, and even
compensate it with added width to the preceding ones. However, NAS methods in general
require costly computational resources for both training a super-network from scratch and
covering multiple search space dimensions. Our method leverages a pre-trained network and
focuses on a single search dimension: depth. Both allow an expedited training time and
facilitated convergence.

Activation removal. Our method uniquely combines activation removal with consecutive
linear layer folding. Nevertheless, activation removal alone has been used for other purposes.
He et al. [12] proposed PReLU, generalizing the ReLU activation function. Ma et al. [28]
extended this idea to arbitrary activation functions. These methods allow learning whether
activations should be shifted towards identity. However, their method learns the extent of
such shift with accuracy optimization in mind. In contrast, we learn a binary decision -
keeping the original activation or replacing it with an identity - with efficiency optimization
in mind. Activation removal has gained further attention with the resurgence of Private
Inference (PI). PI performs inference on encrypted data, where latency is hindered mostly
by non-linear activations such as ReLU. Ghodsi et al. [8] performed NAS to optimize the
placement of skip connections and considered pruning ReLU activations that follow them.
Jha et al. [18] proposed to measure ReLU criticality by evaluating a model’s performance
with ReLUs of entire stages or alternating layers being removed. While we leave it to future
work, our work can also be used to accelerate PI.

3 Method

We present a method which allows to reduce the number of non-linear activations in a neural
network. This effectively enables to merge adjacent linear layers into a single one. We
call this process Layer Folding. Given a non-linear activation function σ , we define the
parametric activation σα() to be the linear combination of σ and the identity function:

σα(x) = αx+(1−α)σ(x), 0≤ α ≤ 1 (1)

where α is a trainable parameter which provides an interpolation between σ and the iden-
tity function. When σ = ReLU , σα() is the common PReLU [12] activation. Given a trained
neural network F , we construct a network Fα by transforming its activations into their cor-
responding parametric activations initialized with α = 0. This ensures that Fα maintains the
same functionality of F .

We perform a fine-tuning stage in which we optimizeFα with respect to both the original
task loss Lt and an auxiliary loss Lc that penalizes smaller α values, encouraging them to

Citation
Citation
{Simonyan and Zisserman} 2015

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Sandler, Howard, Zhu, Zhmoginov, and Chen} 2018

Citation
Citation
{Zoph and Le} 2016

Citation
Citation
{Real, Aggarwal, Huang, and Le} 2019

Citation
Citation
{Liu, Simonyan, and Yang} 2018{}

Citation
Citation
{Kandasamy, Neiswanger, Schneider, P{ó}czos, and Xing} 2018

Citation
Citation
{Liu, Zoph, Neumann, Shlens, Hua, Li, Fei-Fei, Yuille, Huang, and Murphy} 2018{}

Citation
Citation
{Luo, Tian, Qin, Chen, and Liu} 2018

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

Citation
Citation
{Ma, Zhang, Liu, and Sun} 2020

Citation
Citation
{Ghodsi, Veldanda, Reagen, and Garg} 2020

Citation
Citation
{Jha, Ghodsi, Garg, and Reagen} 2021

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

BEN DROR ET AL.: LAYER FOLDING 5

become 1. We consider a general form of Lc:

Lc = ∑
l∈L

cl h(αl) (2)

where αl corresponds to the lth activation and h(α) is a monotonically decreasing func-
tion for 0 ≤ α ≤ 1. {cl}l∈L weigh the contribution of each layer to Lc. These are used
to depict a varying potential value for folding different layers and can be set, for example,
according to a measured latency on a target device. When we simply want to encourage a
shallow network we set cl = 1, l = 1 : L.

While many forms of h can be applied, we provide a simple suggestion for h such that
Lc becomes:

Lc = ∑
l∈L

cl (1−α
p
l) (3)

We select this form for the following reasons: after training, a layer can be folded with
its subsequent one only if its corresponding α is sufficiently close to 1. In particular, we are
sensitive to small changes in αl near 1, since the farther σα deviates from identity the larger
the error incurred from Layer Folding. Yet, we are indifferent to small changes in α near
0 since the matching layer cannot be folded anyway. We would like Lc to represent these
ideas. p > 1 is a hyperparameter controlling the flatness of the loss surface around αl = 0
and the strength in which larger αl values are pushed to 1. Our final loss function is:

L= Lt +λcLc (4)

where λc is a hyperparameter that balances between the task loss and the amount of
layers that will be folded.

We define the folding of two adjacent linear layers that reside between the feature maps
{X ,Y,Z}, g1 : X → Y and g2 : Y → Z, as their composite function, i.e., g1 ◦ g2 : X → Z.
We provide two examples for fully connected layers and convolution layers while omitting
the linear bias addition and batch normalization operations for brevity. For g1(x) = W1x,
g2(y) = W2y fully connected layers where x ∈ RdX , y ∈ RdY , z ∈ RdZ , W1 ∈ RdY×dX , W2 ∈
RdZ×dY , their folding is given by:

g f old(x) = W2W1x (5)

For g1(x)=
{

∑
cX
i=1 Wi, j

1 ∗xi

}cY

j=1
, g2(y)=

{
∑

cY
j=1 W j,m

2 ∗y j

}cZ

m=1
convolution layers where

x∈Rh×w×cX , y∈Rh×w×cY , z∈Rh×w×cZ , W1 ∈Rk×k×cY×cX , W2 ∈Rk×k×cZ×cY , their folding
is given by:

g f old(x) =

{
cX

∑
i=1

(
cY

∑
j=1

W i, j
1 ∗W j,m

2

)
∗ xi

}cZ

m=1

(6)

Our method comprises 2 phases: pre-folding and post-folding. In the pre-folding phase
we fine-tune Fα with the loss defined in (4). When training converges we remove activations
whose αs exceed a threshold τ and fold the corresponding adjacent layers, resulting in a
shallower network F f old . In the post-folding phase, we fine-tune F f old once more for two
main reasons. First, the underlying function ofF f old may yet deviate fromFα due to various

6 BEN DROR ET AL.: LAYER FOLDING

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Latency (ms)

66

68

70

72

74

76

T
op
-1

A
cc
u
ra
cy

(%
)

MNV2-0.75

MNV2-1.0

MNV2-1.4

MNV2-0.75fold

MNV2-1.0fold

MNV2-1.4fold

MobileNetV2

MobileNetV2fold

Figure 2: Layer Folding results on
ImageNet.

Model Acc. (%) / Latency FLOPs
Acc. Drop (%) Reduction Reduction

MNV2-0.75 68.1 / 1.7 21% 4%
MNV2-1.0 71.0 / 0.8 25% 7%
MNV2-1.4 75.5 / 0.5 19% 3%
EffNet-lite0 74.6 / 0.5 15% 3%
EffNet-lite1 75.8 / 1.0 13% 0%

Table 1: Latency and FLOPs reduction
obtained by applying Layer Folding on
MobileNetV2 (MNV2) and EfficientNet
(EffNet) on ImageNet.

layers’ attributes such as padding, resulting in a small accuracy decrease. Post-folding fine-
tuning allows the network to recover from it. Second, in some cases, F f old result in a larger
number of weights. Further training of F f old may leverage the added capacity and increase
accuracy. Our method is illustrated in Figure 1.

4 Depth Optimization for Efficient Networks
In this section we utilize our method to optimize networks with respect to both accuracy and
efficiency. We perform our experiments on the ImageNet image classification task [36] and
measure the latency of all models on NVIDIA Titan X Pascal GPU.

We consider the commonly used MobileNetV2 [38] and EfficientNet-lite [26]. We focus
on these models for their attractiveness for hardware and edge devices, mostly credited to
their competitive latency and the exclusion of squeeze-and-excite layers [16] employed by
other state-of-the-art networks.

Both MobileNetV2 and EfficientNet-lite consist of multiple mobile inverted bottleneck
blocks (MBConv). An MBConv block is composed of three convolution layers and two
activations: (1) an expansion layer with W ∈R1×1×ct×c where t denotes an expansion factor
over the input channel dimension c followed by ReLU6, (2) a depthwise layer with W ∈
R3×3×c followed by ReLU6, and (3) a projection layer with W∈R1×1×c×ct . Removing only
the first ReLU6 will allow us to fold the expansion and depthwise layers into a convolution
with W ∈ R3×3×ct×c. Interestingly, MobileNetEdgeTPU [14] followed this exact approach
and adopted fused inverted bottleneck. In this model, expansion layers were folded with
depthwise layers despite a FLOPs increase, acknowledging the potential latency reduction.
This was performed on the first MBConvs. Indeed, in the general case, such folding may
lead to a disadvantageous increase in FLOPs when c� 9. Removing the second ReLU6
will result in a similar FLOPs increase. However, we recognize that removing both ReLU6
activations will allow folding all three convolutions into a single layer with W ∈ R3×3×c×c.
This effectively halve the computational load for blocks in MobileNetV2 where t = 6. In our
experiments, we leverage this favorable scenario by forcing folding of an entire MBConv
blocks. For every block, we share the same α among both of its activations. This ensures
that they are either removed together or remain.

We apply Layer Folding on MobileNetV2-1.4, MobileNetV2-1.0, MobileNetV2-0.75,
EfficientNet-lite0 and EfficientNet-lite1. Our implementation details are provided in the

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2015

Citation
Citation
{Sandler, Howard, Zhu, Zhmoginov, and Chen} 2018

Citation
Citation
{Liu} 2020

Citation
Citation
{Hu, Shen, and Sun} 2018

Citation
Citation
{Howard, Sandler, Chu, Chen, Chen, Tan, Wang, Zhu, Pang, Vasudevan, etprotect unhbox voidb@x penalty @M {}al.} 2019

BEN DROR ET AL.: LAYER FOLDING 7

0 5 10 15 20 25 30 35 40 45 50 55
Number of non-linear layers

70

80

90

A
cc
u
ra
cy

(%
)

ResNet-20

ResNet-32

ResNet-44

ResNet-56

VGG16

VGG19

MNV2-0.75

MNV2-1.0

MNV2-1.4

0 5 10 15 20 25 30 35 40 45 50 55
Number of non-linear layers

30

40

50

60

70

A
cc
u
ra
cy

(%
)

ResNet-20

ResNet-32

ResNet-44

ResNet-56

VGG16

VGG19

MNV2-0.75

MNV2-1.0

MNV2-1.4

Figure 3: Layer Folding applied on ResNet, VGG, and MobileNetV2 (MNV2) architectures
on CIFAR-10 (left) and CIFAR-100 (right). For each network, we gradually remove non-
linear layers.

0 2 4 6 8 10 12 14 16 18 20
Number of non-linear layers

60

70

80

90

A
cc
u
ra
cy

(%
)

ResNet-20: pre-fold

ResNet-20: post-fold

ResNet-L

VGG16: pre-fold

VGG16: post-fold

VGG-L

0 2 4 6 8 10 12 14 16 18 20
Number of non-linear layers

50

55

60

65

70

75

A
cc
u
ra
cy

(%
)

ResNet-20: pre-fold

ResNet-20: post-fold

ResNet-L

VGG16: pre-fold

VGG16: post-fold

VGG-L

Figure 4: Relative contribution of pre-folding and post-folding. We perform pre-folding
fine-tuning on ResNet-20 and VGG-16 and compare them to their shallower architectures
resulting from post-folding. We also compare them to training the folded architectures
from scratch, denoted by ResNet-L and VGG-L. Results are shown for CIFAR-10 (left)
and CIFAR-100 (right).

Appendix.
As shown in Figure 2, our folded models outperform MobileNetV2 variants. For exam-

ple, compared to MobileNetV2-0.75, we obtain a model with a 1.2% higher top-1 accuracy
at a 14% faster execution time. Table 1 shows the latency reduction obtained for MobileNet
and EfficientNet models. These improvements should be viewed while taking the simplicity
and efficiency of our method into account.

5 Depth Reduction Analysis
In this section we use Layer Folding over different network architectures to evaluate how ac-
curacy changes w.r.t. depth. We perform our experiments on CIFAR-10 and CIFAR-100 [20]
image classification tasks. For CIFAR-10 and CIFAR-100, we consider the commonly used
ResNet, VGG, and MobileNet architectures [13, 38, 39]. We use pre-trained ResNet models
with depth L ∈ {20,32,44,56}, VGG models with depth L ∈ {16,19}, and MobileNetV2
with depth multiplier d ∈ {0.75,1.0,1.4} [4]. For each of these networks, we apply Layer
Folding with cl = 1, l = 1 : L, p = 2, τ = 0.9 while varying λc to obtain shallower networks

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x penalty @M {}al.} 2009

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Sandler, Howard, Zhu, Zhmoginov, and Chen} 2018

Citation
Citation
{Simonyan and Zisserman} 2015

Citation
Citation
{Chen} 2019

8 BEN DROR ET AL.: LAYER FOLDING

of varying depth. We apply only pre-folding in order to avoid increasing the networks’ size.
Figure 3 shows our results for CIFAR-10 and CIFAR-100. Interestingly, all ResNet mod-

els exhibit a similar depth-accuracy tradeoff, regardless of their initial depth. For example,
they all preserve an accuracy of 90% on CIFAR-10 when folded to only 10 non-linear layers.
In addition, as depth decreases, they all depict a modest accuracy decrease at first and a no-
ticeable drop afterwards, resembling a knee-point. For instance, the depth of ResNet-56 can
be almost halved without incurring accuracy degradation. The accuracy of ResNet-32 folded
to 6 non-linear layers, decreases by only 1% when folding another layer, but drops by more
than 10% when folding two. Similar phenomena can be observed for VGG and MobileNet,
as well as on CIFAR-100. Such analysis can aid network architecture design according to
computational budget and required accuracy.

In Figure 4 we compare networks obtained by pre-folding and post-folding. The results
show that the EDNL of a folded network conforms to the one of the original network. We
note that for folded networks, shallower architectures utilize more parameters, as the folding
of two consecutive convolution layers with weights W ∈ R3×3×c×c result in a layer whose
weights are W ∈ R5×5×c×c, i.e., its size grows by 40%. Hence, this experiment emphasizes
the importance of depth even when it is disproportional to model’s size, as networks were
outperformed by deeper counterparts with fewer parameters. In addition, the slight accuracy
increase of the folded networks quantifies the benefit of the post-folding phase. We believe
that this makes them favorable to further efficiency optimization such as kernel size reduc-
tion. For example, we speculate that a 9×9 kernel resulted from folding four 3×3 kernels
can be successfully distilled into a 7× 7 kernel that nonetheless holds more capacity (49)
than the four kernels altogether (36). We leave such optimization directions to future work.

We further compare our method to training randomly initialized networks with different
depths as commonly practiced in NAS methods. Figure 4 shows the accuracy degradation
of the folded architectures when trained from scratch rather than derived from their deeper
source by our method.

While Layer Folding can be applied with various loss functions in accordance with Equa-
tion (2), we show that our chosen loss function in Equation (3) can effectively remove non-
linear layers. Figure 5 validates that α values are indeed kept around zero or pushed to one,
avoiding values in between. Additionally, we show that our method is not biased towards
folding layers either in the beginning or the end of a given architecture. Table 2 shows the
indices of the removed layers for folded ResNet, VGG and MobileNetV2 networks such that
their resulting depth corresponds to the aforementioned knee-point in Figure 3.

6 Folding and Pruning

Layer Folding is a depth reduction method. As opposed to pruning methods, it does not
encourage the network to explicitly remove any filters, weights, or neurons. This suggests
that width reduction methods, such as filter pruning, can be used conjointly with our method,
meaning that their expected contribution is additive rather than alternative to ours. In order
to support this claim we applied the filter pruning method introduced by Li et al. [22] on
ResNet-20 and ResNet-56 for both folded and non-folded networks. Table 3 shows that the
accuracy drop in a folded network is similar or smaller than the accuracy drop in the original
network.

Citation
Citation
{Li, Kadav, Durdanovic, Samet, and Graf} 2017

BEN DROR ET AL.: LAYER FOLDING 9

0 20 40 60 80 100
Epochs

0.0

0.5

1.0

α
va
lu
e

Layer
index

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

0

20

40

60

80

100

A
cc
u
ra
cy

(%
)

0 20 40 60 80 100
Epochs

0.0

0.5

1.0

α
va
lu
e

Layer
index

1
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
49
52

0

20

40

60

80

100

A
cc
u
ra
cy

(%
)

Figure 5: Progression of αl values corresponding to non-linear layers in ResNet-20 (top)
and ResNet-56 (bottom) throughout the pre-folding phase with λc = 0.25. As expected, all
α values are either kept around zero or pushed to one.

Dataset Model Remaining activations Depth Acc. (%)
CIFAR-10 ResNet-20 9 89.82

ResNet-32 9 90.02
ResNet-44 9 89.88
ResNet-56 10 90.29

VGG16 9 93.89
VGG19 8 93.23

MNV2-0.75 10 91.90
MNV2-1.0 10 92.03
MNV2-1.4 9 92.31

CIFAR-100 ResNet-20 11 67.88
ResNet-32 11 68.20
ResNet-44 11 67.96
ResNet-56 10 67.04

VGG16 12 72.82
VGG19 12 73.18

MNV2-0.75 10 71.80
MNV2-1.0 10 72.46
MNV2-1.4 12 73.52

Table 2: Folded networks. Remaining activations are gray.

10 BEN DROR ET AL.: LAYER FOLDING

Model Acc. Acc. 20% Pruned Acc. 40% Pruned
ResNet-20 91.27% 91.00% (-0.27%) 89.87% (-1.40%)

ResNet-20-10f* 90.33% 90.16% (-0.17%) 89.11% (-1.22%)
ResNet-56 94.37% 93.80% (-0.57%) 93.12% (-1.25%)

ResNet-56-37f† 92.69% 92.60% (-0.09%) 91.88% (-0.81%)

Table 3: Filter pruning results on CIFAR-10. X% Pruned denotes the rate of pruned filters
in every inner layer. Pruning yields very similar accuracy drops for both folded and non-
folded networks. (*) denotes ResNet-20 with 10 folded layers. (†) denotes ResNet-56 with
37 folded layers.

7 Conclusion
In this work we propose a novel method for removing non-linear activations. Extensive
experiments on several image classification tasks show that our method can significantly
reduce the depth of neural networks with a minor effect on accuracy. We show how reduced
depth can aid latency reduction on hardware devices and provide efficient alternatives to
mobile network architectures. We also show how Layer Folding can be used in conjunction
with channel pruning methods, allowing for further efficiency improvements.

References
[1] Monica Bianchini and Franco Scarselli. On the complexity of neural network classi-

fiers: A comparison between shallow and deep architectures. IEEE transactions on
neural networks and learning systems, 25(8):1553–1565, 2014.

[2] Helmut Bolcskei, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. Optimal ap-
proximation with sparsely connected deep neural networks. SIAM Journal on Mathe-
matics of Data Science, 1(1):8–45, 2019.

[3] Shi Chen and Qi Zhao. Shallowing deep networks: Layer-wise pruning based on fea-
ture representations. IEEE transactions on pattern analysis and machine intelligence,
41(12):3048–3056, 2018.

[4] Yaofo Chen. Pytorch cifar models. https://
github.com/chenyaofo/pytorch-cifar-models, com-
mit:9751dd01a18d0c471b2c4522ae734757b6c94d8d, 2019.

[5] Amit Daniely. Depth separation for neural networks. In Conference on Learning The-
ory, pages 690–696. PMLR, 2017.

[6] Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product networks. Ad-
vances in neural information processing systems, 24:666–674, 2011.

[7] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and
Jian Sun. Repvgg: Making vgg-style convnets great again. arXiv preprint
arXiv:2101.03697, 2021.

[8] Zahra Ghodsi, Akshaj Kumar Veldanda, Brandon Reagen, and Siddharth Garg.
Cryptonas: Private inference on a relu budget. In H. Larochelle, M. Ranzato,

https://github.com/chenyaofo/pytorch-cifar-models
https://github.com/chenyaofo/pytorch-cifar-models

BEN DROR ET AL.: LAYER FOLDING 11

R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Informa-
tion Processing Systems, volume 33, pages 16961–16971. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper/2020/file/
c519d47c329c79537fbb2b6f1c551ff0-Paper.pdf.

[9] Klaus Greff, Rupesh Kumar Srivastava, and Jürgen Schmidhuber. Highway and resid-
ual networks learn unrolled iterative estimation. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/
forum?id=Skn9Shcxe.

[10] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and con-
nections for efficient neural network. In Advances in Neural Information Processing
Systems (NIPS), pages 1135–1143, 2015.

[11] Babak Hassibi and David G Stork. Second order derivatives for network pruning:
Optimal brain surgeon. Morgan Kaufmann, 1993.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026–1034, 2015.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[14] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing
Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for
mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 1314–1324, 2019.

[15] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[16] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 7132–7141,
2018.

[17] Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal,
and Phillip Isola. The low-rank simplicity bias in deep networks. arXiv preprint
arXiv:2103.10427, 2021.

[18] Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen. Deepreduce:
Relu reduction for fast private inference. CoRR, abs/2103.01396, 2021. URL https:
//arxiv.org/abs/2103.01396.

[19] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabás Póczos, and
Eric P. Xing. Neural architecture search with bayesian optimisation and optimal

https://proceedings.neurips.cc/paper/2020/file/c519d47c329c79537fbb2b6f1c551ff0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c519d47c329c79537fbb2b6f1c551ff0-Paper.pdf
https://openreview.net/forum?id=Skn9Shcxe
https://openreview.net/forum?id=Skn9Shcxe
https://arxiv.org/abs/2103.01396
https://arxiv.org/abs/2103.01396

12 BEN DROR ET AL.: LAYER FOLDING

transport. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grau-
man, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural In-
formation Processing Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pages 2020–2029, 2018. URL https://proceedings.neurips.cc/paper/
2018/hash/f33ba15effa5c10e873bf3842afb46a6-Abstract.html.

[20] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[21] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in
neural information processing systems, pages 598–605, 1990.

[22] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning
filters for efficient convnets. In 5th International Conference on Learning Represen-
tations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceed-
ings. OpenReview.net, 2017. URL https://openreview.net/forum?id=
rJqFGTslg.

[23] Shiyu Liang and R. Srikant. Why deep neural networks for function approximation?
In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.
URL https://openreview.net/forum?id=SkpSlKIel.

[24] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li,
Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural archi-
tecture search. In Proceedings of the European conference on computer vision (ECCV),
pages 19–34, 2018.

[25] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture
search. arXiv preprint arXiv:1806.09055, 2018.

[26] R Liu. Higher accuracy on vision models with efficientnet-lite. TensorFlow
Blog.[online] Available at: https://blog. tensorflow. org/2020/03/higher-accuracy-on-
visionmodels-with-efficientnet-lite. html [Accessed 30 Apr. 2020], 2020.

[27] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture
optimization. arXiv preprint arXiv:1808.07233, 2018.

[28] Ningning Ma, Xiangyu Zhang, Ming Liu, and Jian Sun. Activate or not: Learning
customized activation. arXiv preprint arXiv:2009.04759, 2020.

[29] Niv Nayman, Yonathan Aflalo, Asaf Noy, and Lihi Zelnik-Manor. Hardcore-nas: Hard
constrained differentiable neural architecture search. arXiv preprint arXiv:2102.11646,
2021.

[30] James O’ Neill, Greg Ver Steeg, and Aram Galstyan. Compressing deep neural net-
works via layer fusion. arXiv preprint arXiv:2007.14917, 2020.

[31] Razvan Pascanu, Guido Montúfar, and Yoshua Bengio. On the number of response
regions of deep feed forward networks with piece-wise linear activations. In Interna-
tional Conference on Learning Representations (ICLR 2014), 2014.

https://proceedings.neurips.cc/paper/2018/hash/f33ba15effa5c10e873bf3842afb46a6-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f33ba15effa5c10e873bf3842afb46a6-Abstract.html
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=SkpSlKIel

BEN DROR ET AL.: LAYER FOLDING 13

[32] Guillermo Valle Pérez, Chico Q Camargo, and Ard A Louis. Deep learning generalizes
because the parameter-function map is biased towards simple functions. stat, 1050:23,
2018.

[33] Philipp Petersen and Felix Voigtlaender. Optimal approximation of piecewise smooth
functions using deep relu neural networks. Neural Networks, 108:296–330, 2018.

[34] Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli
Liao. Why and when can deep-but not shallow-networks avoid the curse of dimension-
ality: a review. International Journal of Automation and Computing, 14(5):503–519,
2017.

[35] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolu-
tion for image classifier architecture search. In Proceedings of the aaai conference on
artificial intelligence, volume 33, pages 4780–4789, 2019.

[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Inter-
national Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi: 10.1007/
s11263-015-0816-y.

[37] Itay Safran and Ohad Shamir. Depth-width tradeoffs in approximating natural functions
with neural networks. In International Conference on Machine Learning, pages 2979–
2987. PMLR, 2017.

[38] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4510–4520, 2018.

[39] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In Yoshua Bengio and Yann LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-
9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/
1409.1556.

[40] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi
Priyantha, Jie Liu, and Diana Marculescu. Single-path nas: Designing hardware-
efficient convnets in less than 4 hours. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 481–497. Springer, 2019.

[41] Matus Telgarsky. Benefits of depth in neural networks. In Conference on learning
theory, pages 1517–1539. PMLR, 2016.

[42] Rishabh Tiwari, Udbhav Bamba, Arnav Chavan, and Deepak Gupta. Chipnet: Budget-
aware pruning with heaviside continuous approximations. In International Conference
on Learning Representations, 2021. URL https://openreview.net/forum?
id=xCxXwTzx4L1.

[43] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie,
Bichen Wu, Matthew Yu, Tao Xu, Kan Chen, et al. Fbnetv2: Differentiable neural ar-
chitecture search for spatial and channel dimensions. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12965–12974, 2020.

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://openreview.net/forum?id=xCxXwTzx4L1
https://openreview.net/forum?id=xCxXwTzx4L1

14 BEN DROR ET AL.: LAYER FOLDING

[44] Wenxiao Wang, Shuai Zhao, Minghao Chen, Jinming Hu, Deng Cai, and Haifeng Liu.
DBP: discrimination based block-level pruning for deep model acceleration. CoRR,
abs/1912.10178, 2019. URL http://arxiv.org/abs/1912.10178.

[45] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu,
Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware
efficient convnet design via differentiable neural architecture search. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10734–
10742, 2019.

[46] Pengtao Xu, Jian Cao, Fanhua Shang, Wenyu Sun, and Pu Li. Layer pruning
via fusible residual convolutional block for deep neural networks. arXiv preprint
arXiv:2011.14356, 2020.

[47] Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural
Networks, 94:103–114, 2017.

[48] Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang
Li. Neuron-level structured pruning using polarization regularizer. Advances in Neural
Information Processing Systems, 33, 2020.

[49] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578, 2016.

http://arxiv.org/abs/1912.10178

