Layer Folding: Neural Network Depth Reduction using Activation Linearization

Amir Ben Dror, Niv Zehngut, Avraham Raviv, Evgeny Artyomov and Ran Vitek

SAMSUNG

SIRC – Samsung Israel R&D Center, Tel Aviv, Israel

MOTIVATION

- As deep neural networks become more prevalent, their applicability to **resource-constrained devices** is limited.

- While modern devices exhibit a high level of parallelism, **real-time latency** is still highly dependent on networks' **depth**.

- Recent works show the width of shallower networks must grow exponentially below a certain depth. However, we presume that neural networks **usually exceed this minimum depth** to accelerate convergence and incrementally increase accuracy

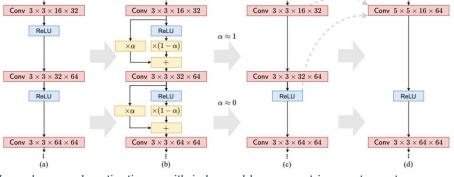
- This motivates us to **transform** pretrained deep networks that already exploit such advantages **into shallower forms**.

OBJECTIVES

- Reduce the depth of a pre-trained network with minimal impact on accuracy.
- Provide more efficient alternatives to MobileNet and EfficientNet architectures on the classification task.
- Explore the accuracy-depth and accuracy-latency trade-offs.

METHOD

Removing activations (non-linearities) allows us to merge consecutive linear layers into a single layer. Thus, we focus on removing activations as a method to reduce depth.



We replace each activation σ with is learnable parametric counterpart:

$$\sigma_{\alpha}(x) = \alpha x + (1 - \alpha)\sigma(x)$$

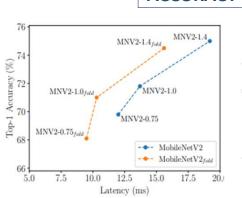
When $\alpha = 0$ we get the original activation, when $\alpha = 1$ we get the identity (essentially removing the activation).

We use an auxiliary loss to encourage each α to become 1:

$$\mathcal{L}_c = \sum_{l \in \mathcal{L}} (1 - \alpha_l^p)$$

ACCURACY ~ DEPTH and the second 90 70 (%) 60 Accuracy 80 50. ResNet-20 VGG19 VGG19 ResNet-20 ResNet-32 ---- MNV2-0.75 ResNet-32 -----MNV2-0.75 40 ResNet-44 MNV2-1.0 70 MNV2-1.0 ResNet-44 ResNet-56 --MNV2-1.4 ResNet-56 MNV2-1.4 30 -----VGG16 ------VGG16 10 15 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40 45 50 55 Ò 5 Ó 5 Number of non-linear layers

Layer Folding applied on ResNet, VGG, and MobileNetV2 (MNV2) architectures on CIFAR-10 (left) and CIFAR-100 (right). For each network, we gradually remove nonlinear layers.



$\mathbf{ACCURACY} \sim \mathbf{LATENCY}$

Model	Acc. (%) / Acc. Drop (%)	Latency Reduction	FLOPs Reduction
MNV2-0.75	68.1 / 1.7	21%	4%
MNV2-1.0	71.0/0.8	25%	7%
MNV2-1.4	75.5/0.5	19%	3%
EffNet-lite0	74.6/0.5	15%	3%
EffNet-lite1	75.8/1.0	13%	0%

Latency and FLOPs reduction obtained by applying Layer Folding on MobileNetV2 (MNV2) and EfficientNet (EffNet) on ImageNet.