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MOTIVATION

- As deep neural networks become more
prevalent, their applicability to resource-
constrained devices is limited.

- While modern devices exhibit a high
level of parallelism, real-time latency is
still highly dependent on networks’ depth.

- Recent works show the width of
shallower networks must grow
exponentially below a certain depth.
However, we presume that neural
networks usually exceed this minimum
depth to accelerate convergence and
incrementally increase accuracy

- This motivates us to transform pre-
trained deep networks that already
exploit such advantages into shallower
forms.

OBJECTIVES

* Reduce the depth of a pre-trained
network with minimal impact on
accuracy.

* Provide more efficient alternatives
to MobileNet and EfficientNet
architectures on the classification
task.

+ Explore the accuracy-depth and
accuracy-latency trade-offs.
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METHOD
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Removing activations (non-linearities) allows us to merge consecutive linear
layers into a single layer. Thus, we focus on removing activations as a method

to reduce depth
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We replace each activation ¢ with is learnable parametric counterpart:
0,(x) =ax + (1 —a)a(x)
When a =0 we get the original activation, when a« =1 we get the identity

(essentially rem

oving the activation).

We use an auxiliary loss to encourage each a to become 1:
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Layer Folding applied on ResNet, VGG, and MobileNetV2 (MNV2) architectures on
CIFAR-10 (left) and CIFAR-100 (right). For each network, we gradually remove
nonlinear layers.
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Latency and FLOPs reduction obtained by applying Layer Folding on
MobileNetV2 (MNV2) and EfficientNet (EffNet) on ImageNet.



