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Abstract

With the development of efficient Super-Resolution (SR), many CNN-based meth-
ods adopt re-parameterization techniques to accelerate inference while training a wider
network. However, the wide feature maps often lead to difficulty in reaching conver-
gence due to information redundancy. To expand network width with a positive effect
on restoration quality, we propose a novel Wide Feature Projector (WFP) module to get
more benefits from wider feature. Besides, previous attention structures were computa-
tionally complex and occupied much memory. To address this issue, we investigate the
peak memory consumption of attention structures in order to design a Fast and Memory-
Economic Attention (FMEA) module, which factorizes the element-wise attention map
to speed up inference and minimize memory consumption. Consequently, we propose a
novel efficient SR network, termed as Wide Feature Projection Network (WFPN), which
achieves a compelling super-resolution performance, and consistently beats its competi-
tors in terms of computation complexity and memory cost.

1 Introduction
Image Super-Resolution (SR) is a popular research topic in computer vision, which aims at
recovering Low-Resolution (LR) images to High-Resolution (HR) correspondence. Since
the pioneering work SRCNN [6] was proposed, deep learning based methods have made a
breakthrough in image restoration, but the running speed and memory occupation are still
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challenges in SR tasks. Most existing SR models tend to employ a highly complicated
network structure that requires large amounts of memory and parameters, thereby hindering
the model deployment in resource-limited environment.

How to improve model efficiency and minimize model size has attracted growing atten-
tion recently [18, 33]. Previous studies suggest that using recurrent neural network [19, 25]
or cascading structure [2] is feasible to reduce parameters, but such techniques are faced with
high computation complexity. Others attempt to construct a lightweight model with fewer
FLOPs. However, the number of FLOPs is not an equivalent judgment of running speed
[33]. Another way is to directly reduce model depth and width, as some tiny models [2, 24]
have a fast running speed and a low memory cost on account of their tiny size. However,
simple structures always cannot fit high-frequency information perfectly, and training such
models is challenging to obtain qualified SR images. In this work, we explore how to train a
prominent and efficient SR model with wide features and re-parameterization technique.

Wide features, indicating augmenting the number of processed channels, can consid-
erably improve network performance for SR tasks [30]. Recent works [28, 34] adopt an
expand-and-squeeze structure to enhance learning local texture information from wide fea-
tures. However, as the network width grows, gains of model performance are limited and
even suffer from an unstable convergence, such as overfitting or gradient vanishing/exploding.
This is because with the number of processed channels rising, the degree of information re-
dundancy increases which makes the neural network more difficult to aggregate multiplied
information from wider features. To address this issue, we propose a Wide Feature Projector
(WFP) module to learn wide features through projecting channel information and main-
taining spatial information simultaneously. Overall speaking, WFP improves the learning
ability of wide features and sufficiently expands the network width to get advantages of
over-parameterization during training.

Recently, structural re-parameterization [5] was proposed to reduce the number of pa-
rameters without compromising network performance. Some existing SR methods [28, 34]
have used re-parameterization to achieve superior inference speed. In this work, we inte-
grate the re-parameterization technique into the proposed Wide Feature Projection Block
(WFPB), which is a typical multi-branch structure consisting of two WFPs and one standard
3×3 convolution block. The design of WFPB enables us to train heavy network but obtain
lightweight network with no sacrifice of performance.

Attention is an effective mechanism to fully excite the capability of SR networks. How-
ever, conventional attention structures occupy a lot of memory and computation resources
due to the multi-branch structure and high-complexity computation. Therefore, we investi-
gate the sharing mechanism in the attention structure while involving identity mapping [10],
and explore the relation between the memory consumption of each individual branch and the
total. Based on the above discoveries, we propose a Fast and Memory-Economic Attention
(FMEA) module, which allows WFPB to concentrate on more significant pixels to improve
model discriminability whereas keep a fast running speed with consuming low memory.

The main contributions of our work can be summarized as follows:
• We propose a Wide Feature Projector (WFP) module to train a wider network. Our

experiments show that WFP could largely alleviate training difficulties in the larger
expanding ratio than the common expand-and-squeeze structure.

• We explore the factors of memory variation in attention by analyzing the running mem-
ory of representative structures. Through our careful analysis, we introduce a Fast and
Memory-Economic Attention (FMEA) module that costs little resources with much
improved performance.
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• Equipped with FMEA and re-parameterization strategy, we further design a Wide
Feature Projection network (WFPN). With lower memory consumption and compu-
tation complexity, WFPN demonstrates a comparable performance to state-of-the-art
lightweight SR methods.

2 Related Work

Efficient image super-resolution. Due to the dilemma of huge memory cost and limited
computing resources on mobile devices, it is imperative to develop efficient SR for real-world
usage. Kim et al. [15] proposed a Very Deep SR (VDSR) network via residual learning to
reduce the number of parameters. Ahn et al. [2] proposed an efficient CAscading Resid-
ual Network (CARN) to reduce FLOPs. Hui et al. [13, 14] used InforMation Distillation
Network (IMDN) to compress number of filters per layer. FSRCNN [7] obtained high accel-
eration from traditional SRCNN [6], benefitting from its plain structure. RFDN [21] utilized
features in residual connection for more efficient feature extraction. RLFN [17] used residual
local feature learning to simplify feature aggregation that optimizes model inference time.

Re-parameterization. Recently, re-parameterization technique has shown its practi-
cability in simplifying complex models. Zagoruyko et al. [31] proposed DiracNets with
weight parameterization for neural networks to no longer add explicit skip connection. Ding
et al. [5] applied a structural re-parameterization in VGG network to improve training ca-
pability. In SR tasks, Zhang et al. [34] utilized the re-parameterization strategy to build an
Edge-oriented Convolution Block (ECB) to replace the standard 3×3 convolution. Wang
et al. [28] introduced batch normalization into SR re-parameterization methods. However,
the above SR methods based on re-parameterization suffer from complicated structure and
optimization issues.

Attention mechanism. Recent works [4, 8, 11, 27, 29, 35] aim at guiding the network
to augment the weight of important signals and alleviate unnecessary ones. SE-Net [11]
is the first work to enhance information extraction through channel attention. CBAM [29]
computes attention information using pooling and convolution to generate attention maps,
which can be integrated into CNN. Zhang et al. [35] proposed Residual Channel Attention
Network (RCAN) by introducing the channel attention mechanism into a modified residual
block for SR. However, most of these methods adopt complex structures and time-consuming
operations, which are extremely detrimental model inference speed and not appropriate to
resource-limited devices.

3 Our Approach

We first present the overall network architecture in Section 3.1. In Section 3.2, we introduce
our Wide Feature Projection Block (WFPB) and how to re-parameterize this architecture
into a standard 3× 3 convolution. Finally, we investigate memory consumption of multi-
branch structures in Section 3.3, which motivates us to design Fast and Memory-Economic
Attention (FMEA) in Section 3.4.
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3.1 Network architecture
Previous SR networks adopt complex topologies as backbones. For instance, multiple branches
[20] and dense connections [26] can enrich the feature representation without introducing
many FLOPs, but concatenation and concurrency lead to high memory consumption and
sacrifice the parallelism degree. We thus use a sequential model structure to improve infer-
ence speed and reduce network bandwidth.

The architecture of the proposed WFPN is depicted in Figure 1. WFPN applies Attention
Block (AB) at the both head and tail for the channel’s expansion and recovery, and alterna-
tively stacks Residual Attention Blocks (RABs) and activation functions as the network body.
Overall, the inference of WFPN can be explained as follows:

F0 = hAB(ILR), (1)

Fn = hn
RAB(h

n−1
RAB(...h

0
RAB(F0)...)), (2)

ISR = hAB(Fn)+hUP(ILR), (3)

where Eq. (1) represents feature extraction, and hAB stands for the first attention block as
shown in Figure 1(b), ILR is the input LR images and F0 is the initial feature maps. Eq. (2)
represents feature learning, and hn

RAB is the n-th Residual Attention Block (RAB). Eq. (3)
represents the HR image restoration process and hUP is the upsampler. In this work, we set
n = 16 to achieve a trade-off between performance and efficiency. Specifically, we select the
bilinear interpolation as a long-skip connection, and perform the upsampling operation at the
end of network with a pixel-shuffle layer. We apply PReLU [9] as the activation function to
each basic component.

3.2 Wide feature projection block
3.2.1 Wide feature projector

Wide Feature Projector (WFP) is proposed to learn a wide feature in a further way. As
shown in Figure 1(d), we employ a D×C× 1× 1 convolution filter as a feature expander,
and a C×D×3×3 filter as a feature squeezer, where C and D denote the channel numbers
before and after feature squeezing. We adopt a 1×1 convolution as the feature projector
paralleled with the 3×3 convolution, and insert a batch normalization layer in the middle for
adding non-linearity property and accelerating convergence speed. In our experiments, we
maximize the network width with the setting of expanding ratio D/C = 4 to yield the best
performance.

This design is motivated by empirical phenomenons about wide SR network training.
Some SR methods with re-parameterization [28, 34] employ an expand-and-squeeze struc-
ture as a basic component of sequential network to sense the information from its former
block. They both set a small expanding ratio since their experiment results show that per-
formance confronts a degradation when this hyperparameter continues rising. Besides, we
found that if we train network with a larger expanding ratio, gradient vanishing/exploding
may occur during training time, and even network cannot reach convergence due to overfit-
ting. Such phenomenons indicate that as the network width increases, learning from wide
features becomes very difficult, which triggers our interest: since expanding network width
with the re-parameterization is free, can we get more benefit from over-parameterization by
further expanding wide features? Intuitively we could use an identity mapping from residual
connection [10] to reduce learning difficulty, but between the expanded and original features,
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Figure 1: Network architecture of the proposed Wide Feature Projection Network (WFPN).⊕
denotes element-wise summation, and

⊗
denotes element-wise multiplication.

the input and output are not of the same dimension, and thus we propose using a channel-
wise compression as a bridge. We found that in different linear operations, a standard 1×1
convolution is the most appropriate for projecting wide features into narrow features. Thus,
we select a C×D×1×1 convolution as a projector to preserve spatial information of wide
features into the subsequent output. In the end, the projector conducts an element-wise sum-
mation with the 3×3 squeezer convolution. The output summation of squeezer and projector
is calculated as follows:

Fj =
4n

∑
i
(Wi ~ fi + ki× fi), i = 1,2, ...,4n, j = 1,2, ...,n, (4)

where fi denotes the i-th input feature map and Fj corresponds the j-th output feature map.
Wi represents the weight matrix of 3×3 convolution, and ki represents the coefficient of
channel-wise compression. ∑ki× fi serves as a projector for mapping information of wide
features. The combination of projector and squeezer is explained as spatial residual learn-
ing: ki× fi learns the channel information and reserves the relative spatial information to the
output, which could largely reduce the difficulties of training Wi ~ fi.

Based on WFP, Wide Feature Projection Block (WFPB) is devised as shown in Fig-
ure 1(d). Multi-branch WFP is regarded as feature extractor from wider features. To reduce
training time and obtain the best performance, we set the branch number as 2. The additional
3×3 convolution could better propagate detailed information from the input feature maps.
Although WFPB seems complicated, thanks to re-parameterization three branches in WFPB
can be merged into a standard 3×3 convolution during inference. A batch normalization
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(BN) layer is also used in each WFP, which is essential to introduce non-linearity and con-
ducive to final results. Additionally, the entire WFPB is accessible to the re-parameterization
technique, which is necessary for an efficient inference.

3.2.2 Re-parameterization in inference

The nice things about convolution is its associativity and linearity, which mean that con-
tinuous and parallel convolutions could be merged into one, meanwhile keep acceptive to
other linear operations. Thus, we could improve the performance of standard convolution by
training it in a more complicated formula, and all we need to do is re-parameterizing it in
inference stage.

We now describe how to re-parameterize WFPB into a standard 3×3 convolution. Af-
ter re-parameterization, output feature F can be calculated by the final weight and bias
{Krep,Brep} of convolution:

F = Krep ~X +Brep, (5)

where X denotes the input feature. {Krep,Brep} are calculated in inference as the left of
Eq. (6):{

Krep = KWFP(1) +KWFP(2) +Kn

Brep = BWFP(1) +BWFP(2) +Bn
,

{
KWFP = perm(Ke)~ (Ks +Kp pad 0)
BWFP = (Ks +Kp pad 0)~ (Be pad Be)+Bs +Bp

(6)
The right of Eq. (6) explains how to represent WFP by merging different convolution ker-
nels. {Ke,Be}, {Ks,Bs} and {Kp,Bp} denote the weight and bias of 1×1 expander, 3×3
squeezer and 1×1 projector convolutions. Batch normalization has been folded in expander.
Particularly, perm operation exchanges the first and second dimensions of the filter, and pad
is a padding operation to adjust 1×1 kernel to 3×3 kernel.

3.3 Memory consumption analysis
It is suggested in [8] that network memory is mainly affected by four components: input
feature memory Minput , output feature memory Mout put , kept feature memory Mkept which
is reserved for future usage, and parameter memory Mnet . Because Minput and Mout put are
regular consumption in sequential models, and Mnet is extremely small that can be ignored,
we concentrate on the analysis of Mkept . To directly display memory consumption rather
than analyzing it from experiences, we construct models with typical attention structures
and identity mapping. By using the network shown in Figure 1(a) as the backbone and
standard 3×3 convolution as components, we add attention layer or identity mapping as
other branches to the basic components for observing different memory values in the stage
of inference. The peak memory consumption of representative structures are summarized in
Table 1.

We have the following observations from Table 1: 1) When we add identity mapping +x
to Conv(x), the peak memory consumption has a regular increment, because identity feature
has to stay in memory until element-wise summation, which leads to an increment of Mkept .
2) CA(x) and SA(x) have almost equivalent memory cost with +x. In the inference stage the
model needs to generate an attention map for element-wise computation after the convolu-
tion block, and x has to be kept in memory to conduct such computation while Conv(x) is
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Identity Attention Identity + Attention
Base Block Memory (M) Base Block Memory (M) Base Block Memory (M)

Conv(x) 39.92 Conv(x)×CA(x) 54.27 Conv(x)×CA(x)+ x 54.27
Conv(x)+ x 54.26 Conv(x)×SA(x) 54.49 Conv(x)×SA(x)+ x 54.49
Conv(x)+2x 69.00 Conv(x)×PA(x) 69.00 Conv(x)×PA(x)+ x 69.00

Table 1: Comparison of peak memory consumptions of different network structures. All
models are validated on the task of×4 upscaling the single image to 1280×720 resolution. x
represents input data, Conv(x) denotes convolution layer, +x indicates the identity mapping,
and +2x is the double identity mappings. CA, SA, PA represent Channel Attention [11],
Spatial Attention [29], and Pixel Attention [36], respectively.

processing. 3) The above two observations indicate that attention layer and identity map-
ping both increase peak memory consumption, but CA(x)+ x or SA(x)+ x have almost the
same memory cost as +x. This observation can be interpreted as identity memory sharing: if
the multi-branch structure has an identity mapping, other branch can utilize identity feature
to generate a target output conditioned on it, rather than storing data twice. 4) CA(x) and
SA(x) have tiny divergence memory cost with that of +x, and PA(x) has a memory expense
much larger than them, nearly approaching that of +2x. Although identity mapping could
share memory with attention layer, extra memory is still produced by the generated attention
map. For channel attention and spatial attention, their attention map sizes are C×1×1 and
1×H×W , which are much smaller than input data C×H×W . However, the attention map
of pixel attention has the equivalent size with output data for an element-wise multiplication.
Therefore, a valid method to reduce peak memory consumption is to avoid generating a large
attention map.

3.4 Fast and memory-economic attention

Overview of our FMEA is represented in Figure 1(e). It consists of a spatial attention branch
and a channel attention branch, which are broadly utilized in SR network. From Section 3.3,
it is clear that there is much more memory spent on pixel attention than channel attention
and spatial attention. Thus, FMEA splits a 3-dimensional element-wise attention into a 1-
dimensional sequence and a 2-dimensional matrix. Therefore, FMEA Mkept has a size of
C×1×1+1×H×W , which is negligible compared with C×H×W , the size of a element-
wise attention map has to reserve in memory.

In order to reduce the computation burden, we generate attention maps with low-computation
operations. Unlike CBAM [29], FMEA avoids concatenation and multi-step pooling to en-
sure fast running speed. For spatial attention, we take up a 1× 1 convolution to aggregate
channels into a single feature map, a batch normalization layer inside to speed up conver-
gence, and a 3× 3 convolution to enlarge the receptive field. Using a 1× 1 convolution in
advance to reduce dimensionality is an effective manipulation for that squeezing channels
could help reduce memory and computation in square ratio. For channel attention, we adopt
the same squeeze-and-excitation structure as [11]. The bottleneck structure could largely
reduce parameter filter size which results in a little amount of computation, and such an
attention method is proven to achieve superior effectiveness in previous networks [11, 35].
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Dataset Scale Bicubic
CARN [2]
(1592K)

IMDN [14]
(715K)

RFDN [21]
(550K)

RLFN [17]
(543K)

WFPN (ours)
(633K)

Set5
×2
×4

33.66 / 0.9299
28.42 / 0.8104

37.76 / 0.9590
32.13 / 0.8937

38.00 / 0.9605
32.21 / 0.8948

38.05 / 0.9606
32.24 / 0.8952

38.07 / 0.9607
32.24 / 0.8952

38.08 / 0.9607
32.25 / 0.8954

Set14
×2
×4

30.24 / 0.8688
26.00 / 0.7027

33.52 / 0.9166
28.60 / 0.7806

33.63 / 0.9177
28.58 / 0.7811

33.68 / 0.9184
28.61 / 0.7819

33.72 / 0.9187
28.62 / 0.7813

33.69 / 0.9179
28.65 / 0.7813

B100
×2
×4

29.56 / 0.8431
25.96 / 0.6675

32.09 / 0.8978
27.58 / 0.7349

32.19 / 0.8996
27.56 / 0.7353

32.16 / 0.8994
27.57 / 0.7360

32.22 / 0.9000
27.60 / 0.7364

32.24 / 0.9002
27.62 / 0.7367

Urban100
×2
×4

26.88 / 0.8403
23.14 / 0.6577

31.92 / 0.9256
26.07 / 0.7837

32.17 / 0.9283
26.04 / 0.7838

32.12 / 0.9278
26.11 / 0.7858

32.33 / 0.9299
26.17 / 0.7877

32.29 / 0.9285
26.19 / 0.7878

Manga109
×2
×4

31.01 / 0.8923
26.66 / 0.7512

38.36 / 0.9765
30.47 / 0.9084

38.88 / 0.9774
30.45 / 0.9075

38.88 / 0.9773
30.58 / 0.9089

−
−

38.90 / 0.9773
30.55 / 0.9085

Table 2: Performance comparison on benchmark datasets. Number of model parameters is
computed on ×4 task. Red indicates the best and blue indicates the second best.

Method Params (K) FLOPs (G) Activations (M) Runtime (ms) Memory (M)
IMDN 894 58.53 154.14 127.55 471.76
RLFN 543 33.99 112.03 100.46 421.26
FMEN 769 50.28 118.23 99.41 262.32
WFPN 632 40.73 76.81 110.23 245.49

Table 3: Efficiency comparison for ×4 upscaling, with PyTorch 1.4.0, CUDA Toolkit
10.0.130, on an NVIDIA Titan X GPU.

4 Experiments

4.1 Dataset and implementation details

We use the high-quality datasets DIV2K [1] and Flickr2K as the training set. The validation
sets are Set5 [3], Set14 [32], BSD100 [22], Urban100 [12] and Manga109 [23]. Results are
evaluated on the luminance channel of YCbCr space with PSNR and SSIM as metrics.

We randomly crop 96×96 pixels of an HR image as training input. We set mini-batch
size to 32 as each training iteration input, and adopt data augmentation on the training set
to improve training effect by random rotations and flipping. We train different upscaling
models with the ADAM optimizer [16] and L1 loss function for 2000 epochs. The initial
learning rate is set to 4× 10−4, and decreases half per 2× 106 iterations for total 2× 107

iterations. Training is conducted on an NVIDIA Titan X GPU.

4.2 Comparison with competitive methods

Performance comparison. We compare our WFPN with other lightweight SR models,
including CARN [2], IMDN [14], RFDN [21], and RLFN [17]. Among them, RLFN and
RFDN respectively won the first place of NTIRE 2022 efficient SR challenge [18] and AIM
2020 challenge on efficient SR [33]. The quantitative comparisons for×2 and×4 upscalings
on benchmark datasets are shown in Table 2. We can find that WFPN shows more compet-
itive effect, and achieves better performance in PSNR / SSIM than these methods. Visual
comparisons are illustrated in Figure 2. WFPN yields more visually pleasant patterns in the
selected Set14 and B100 images, compared with other methods.
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RFDN
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Figure 2: Visual results on Set14 and B100 for ×4 upscaling.

Expanding Ratio 1 2 3 4 5
WFP 31.95 32.09 32.12 32.15 32.09
ESC 31.94 32.06 32.07 - -

Table 4: PSNR results evaluated on Set5 of different expanding ratios of WFP and ESC.
− denotes there is a gradient vanishing/exploding problem or stopping converging untimely
during training.

Efficiency comparison. We also evaluate resource and time-consuming metrics. We select
three recent state-of-the-art lightweight SR methods, IMDN [14], RLFN [17] and FMEN
[8] as comparison models in terms of efficiency. As shown in Table 3, WFPN achieves
the lowest memory and activations, the second lowest FLOPs and parameters. The results
indicate that our analysis about peak memory consumption has a good implication for real-
world applications, and re-parameterization could largely reduce model parameters.

4.3 Ablation study
All the ablation experiments are conducted on the ×4 model. Especially, we record the
results in 4×106 iterations.

Expanding ratio. We adjust the expanding ratio of WFP from 1 to 5. Table 4 implies
that setting ratio = 4 works best. According to trends of PSNR, with the expanding ratio
increasing, WFP is improved gradually until the number of channels overloads the training
capability.

WFP vs. expand-and-squeeze convolution. We replace WFP in our network with
Expand-and-Squeeze Convolution (ESC) and then perform the identical adjustment of ex-
panding ratio. ESC has the same expander and squeezer convolutions as WFP but no pro-
jector. From Table 4 we observe that with the expanding ratio increasing, ESC is confronted
with a convergence problem during training. As a contrast, WFP can keep training stability
no matter how ratio grows. These results verify that WFP performs better on training a wider
network than ESC.
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Structure Set5 Set14 Branches Set5 Set14
2×WFP + 3×3 conv 32.05 28.55 1 32.01 28.54
2×WFP + 1×1 conv 32.02 28.45 2 32.05 28.55
2×WFP + identity 31.98 28.43 3 32.02 28.57
2×WFP 29.56 26.93 4 31.95 28.53

Table 5: Ablation studies on WFPB structure.

Attention Type Params (K) Multi-Adds (G) Memory (M) Set5 Set14
WFPN 633 35.87 58.62 32.15 33.65

WFPN_SA 623 35.81 58.57 32.12 33.62
WFPN_CA 632 35.79 58.54 32.08 33.59

WFPN_Plain 621 35.73 58.48 32.02 33.42
WFPN_PA 691 39.69 73.51 32.16 33.61

Table 6: Effect of FMEA.

Overall structure of WFPB. As shown in Table 5, we explore different choices of
WFPB structure and the most suitable number of WFP branches. 1) Replacing the 3×3
convolution with a 1× 1 convolution would not bring an apparent degradation. They both
could serve as the base performance insurance of WFPB. 2) Identity mapping is also a valid
method, but it is still much worse than the convolution layer. 3) Without the convolution or
identity mapping, WFP cannot serve as a valueable branch to conduct feature learning. 4)
We change the number of WFP branches in WFPB. It is observed that two WFPs lead to the
best performance, but the PSNR saturates if we further increase the branch number.

Effectiveness and efficiency of FMEA. To demonstrate the impact of the proposed
FMEA module, we select our WFPN as the basic network, and keep only Spatial Atten-
tion (SA) branch of FMEA as WFPN_SA, Channel Attention (CA) branch of FMEA as
WFPN_CA, remove FMEA as WFPN_Plain, and replace FMEA with Pixel Attention (PA)
[36] as WFPN_PA. Table 4.3 shows that CA and SA of FMEA both improve our WFPN,
while SA contributes more to the restoration quality. By comparing WFPN and WFPN_Plain,
we found that FMEA only consumes little in parameters, computation resource, and mem-
ory. WFPN_PA has a large resource consumption rise compared with WFPN_Plain, which
justifies our memory analysis about multi-branch structure in Section 3.3.

4.4 Conclusion

In this paper, we construct Wide Feature Projection Network (WFPN) for efficient super-
resolution. To alleviate training difficulty in wide features, we propose a Wide Feature Pro-
jection Block (WFPB) based on Wide Feature Projection (WFP) to train a wider network,
which is inference-efficient with the help of re-parameterization technique. Through investi-
gating peak memory consumption of multi-branch network, we design a Fast and Memory-
Economic Attention (FMEA) by factorizing attention map to minimize resources of attention
mechanism. WFPN achieves better performance than previous methods with low resource
consumption and a fast running speed.
Acknowledgments This work was supported by the National Natural Science Foundation
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