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Abstract

Dense 3D human shape recovery plays an essential role in many computer vision
and human-computer interaction tasks. However, accurate and robust 3D human body
reconstruction in the wild is very challenging due to non-rigid deformation, occlusion,
high-speed motion, etc., restricting the practical applications of the existing 3D human
body recovery methods. To alleviate these issues, we propose a novel method using
FOcal and Gated Recurrent Unit (GRU) encoders for high-precision 3D human Mesh
reconstruction (FoGMesh) in video sequences. Specifically, we first design a new human
body prior encoder based on the focal attention mechanism to learn fine-grained local and
coarse-grained global interactions. Then, we build a multi-scale feature fusion module
to fuse the context information and adaptively adjust the attention weights of small-scale
body parts, such as hands. Last, we use the GRU encoder to connect the relevance
and implement the proposed FoGMesh method in an end-to-end trainable framework.
The proposed method achieves excellent performance on several benchmarking datasets,
demonstrating its merits and superiority over the state-of-the-art approaches.

1 Introduction
3D human mesh recovery, a.k.a human pose estimation or shape reconstruction, is one of the
most popular research topics in computer vision. With the rapid development of the area,
high-precision 3D human body reconstruction has become a key technology in many down-
stream applications. The existing 3D human body reconstruction methods can be divided
into two main categories, model-based and learning-based methods. Most of the classical
approaches are model-based, which fit the 3D parametric human body and joint models and
other clues by minimizing a predefined cost function with an optimization method. Recently,
with the success of deep neural networks, state-of-the-art approaches are learning-based and
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data-driven. These methods usually learn a deep network that regresses the parameters of
a 3D morphable human body model directly from an input image, achieving promising 3D
reconstruction performance.

In general, it is a challenging task to infer accurate 3D human body meshes from 2D
images since the information is incomplete and the process involves several sub-problems.
In addition to the common difficulties, such as inadequate inference from 2D to 3D, lack
of sufficient 3D annotated data, occlusion, self-occlusion, etc, the challenges are also posed
by high-speed motion blur and obscure characteristics of small-scale body parts such as the
hands. In recent years, one of the most widely studied frameworks is to learn a deep network
from a large number of training samples, so the network can accurately regress the pose
and shape parameters of a parametric human body model. The pose parameters control the
rotation angle and position of the root joint while the shape parameters adjust the deformation
of the human body. The well-known Skinned Multi-Person Linear model (SMPL) [28] has
been widely used by existing approaches [19, 20, 32, 33]. However, the performance of
these methods highly relies on the representative capability of the 3D parametric human body
model. In contrast to these methods, we use an alternative approach for high-performance
3D human body recovery by using a 3D parametric human body model only as the prior
information.

In this paper, we propose a novel method, namely FOcal encoder and GRU for Mesh
reconstruction (FoGMesh), which uses a GRU encoder and multi-layer Transformer encoder
to reconstruct accurate 3D human mesh from multiple sequential image frames. Recent
studies demonstrate that Transformer has achieved great success in many computer vision
tasks due to the self-attention mechanism, which can effectively capture global relevance
among any two elements in a feature map. Based on the Transformer encoder structure,
the method in this paper incorporates the idea of focal attention to capture global relevance
information and effectively uses the local information of the relation between vertices. In
addition, we propose the Contextual Augmentation and spatial Attention (CAA) module that
integrates multi-scale features and highlights important elements via spatial attention. CAA
effectively fuses the context pose information and automatically adjusts the attention weights
of small-scale body parts for robust and discriminative feature extraction. Furthermore, GRU
is a kind of Recurrent Neural Network (RNN), which has been proven to be able to obtain
promising performance when processing sequence data. Therefore, we use the GRU encoder
to learn historical pose information, so that our method can maintain robustness in high-
speed motion scenes. Last, the above modules are integrated in an end-to-end trainable
manner for ease of implementation and use.

To summarize, the main contributions of this paper include:

• We present FoGMesh, taking the advantage of the focal attention mechanism to model
both local and global interactions for 3D human mesh recovery.

• We propose the CAA module that merges multi-scale features and effectively amplifies
the attention weights of small-scale body parts.

• FoGMesh outperforms the existing state-of-the-art methods on 3DPW and achieves
better stability in high-speed motion scenes.
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2 Related work

2.1 Model-based methods

A model-based method performs 3D human body reconstruction by fitting 3D parametric
human models, silhouettes, or junctions to an input image with a pre-defined optimization
cost. For shape estimation, early studies usually solve the problem by fixing the pose of the
estimated 3D human body. The reason is that early-stage 3D parametric human body models
lack the representation capability of recovering complicated pose deformations [11]. To
address this issue, the Shape Completion and Animation for PEople (SCAPE) model [2] was
proposed to achieve high-quality 3D mesh reconstruction of human body images and videos.
Balan et al. [3] proposed to use SCAPE as the human body template to track moving persons
in 3D, by fitting SCAPE to silhouettes. The method can handle rich pose variations and has
achieved more realistic 3D reconstruction results. In addition, some methods reconstruct 3D
shapes and track human motion using a pre-scanned human model from laser sensors [7,
9]. For example, by fitting an articulated template using segmented images [8], one can
estimate the 3D human body skeleton to track the movements of humans. For pre-scanned
models, some new non-rigid optimization algorithms [23, 24] were also proposed for better
reconstruction results.

In general, the performance of a model-based method highly relies on a 3D parametric
human body model. A 3D human mesh is reconstructed by fitting limited information such
as joint points and silhouettes extracted from an input image. The model-based methods
are classical and useful for human body tracking and reconstruction. Although they have
achieved some success, this type of method is heavily dependent on the accuracy of the prior
information. Also, due to the complexity of the optimization process and poor performance
in fast-motion scenarios, their practical applications are limited.

2.2 Learning-based methods

Recently, deep learning has become the mainstream method in 2D and 3D human pose es-
timation [29, 30, 37, 41, 43]. The aim is to learn a powerful network that can regress the
human pose via training the network with a large number of examples. In rent years, a vari-
ety of deep networks have been developed and investigated by the community. As a result,
great progress has been made on publicly available human pose estimation datasets. In this
paper, we focus on 3D human mesh recovery so we introduce 3D methods only.

3D human mesh recovery from a single image. Bogo et al. [4] proposed SMPLify,
one of the earliest end-to-end learning-based methods, to predict the parameters of the
SMPL model from 2D joints with convolutional neural networks. Since then, several stud-
ies have been proposed to directly regress the SMPL model parameters using deep neural
networks [13, 17, 32, 33]. Moreover, due to the lack of 3D annotations, many existing ap-
proaches use a weakly supervised method by re-projecting the losses obtained by 2D key
points [17], such as using a self-supervised method by enforcing consistency of the feature
representations across different resolutions [44], or recording body and part segmentation as
an intermediate representation [32, 33]. More recently, with the success of Transformer in
computer vision, a variety of Transformer-based methods have been proposed for the task of
3D human mesh recovery [25, 26, 40, 46]. For instance, Lin et al. [25] introduced the prior
knowledge of a parametric model by injecting the base template of SMPL into image fea-
tures. After that, Lin et al. [26] introduced graph convolution on the basis of METRO [25],
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which makes local and global interaction modeling more robust. However, these methods
could not well tackle temporal data, especially in high-speed motion scenes.

3D human mesh recovery from video sequences. Hogg [14] matched a simplified hu-
man body model with image features of walking persons in many early studies to estimate
their body poses in video sequences. Classical methods also explored the use of Principal
Component Analysis (PCA) to learn the prior knowledge of motion from data, but they were
limited to simple motion postures. Many recently, deep learning methods [6, 15, 35] mainly
focus on capturing joint positions of the human body in video sequences. Several recent
studies have proposed to perform the task in an end-to-end manner [19, 31]. For example,
Mehta et al. [31] adopted an end-to-end trainable network to directly regress 3D joint po-
sitions. Although this method performs well on indoor datasets, such as Human3.6M [16],
its performance decreases significantly on in-the-wild datasets such as 3DPW [39]. To fur-
ther improve the performance of 3D human mesh recovery in the wild, we advocate a novel
method in this paper using focal and GRU encoders.

3 The proposed FoGMesh method
We first present the overall framework of FoGMesh in Section 3.1. Then, we introduce
the proposed Contextual Augmentation and spatial Attention (CAA) module in Section 3.2.
Last, we propose the Focal encoder to explore inner vertex relations in Section 3.3.

3.1 The Overall Framework
As shown in Figure 1, given a video sequence V = {It}T

t=1 of length T , our network consists
of three parts.

Firstly, we follow the standard formulation to extract the grid and global features from
continuous video frames It using CNN. In particular, we establish our feature extraction mod-
ule on the basis of an existing large-scale network, HRNet (High-Resolution Net) [36], which
has illustrated consistent advantages in dense prediction tasks in computer vision [25, 26].
However, we believe that the feature layers of different scales are not well integrated, which
suppress the small scale components. Therefore, we propose the CAA module to enrich
the context information and adaptively adjust the attention weights of small-scale body parts
through the spatial attention module. The details of the CAA module will be presented in
Section 3.2. Similar to [26], our HRNet-CAA outputs 1024-Dim 7× 7 grid features and
2048-Dim global feature vectors. After that, we tokenize the obtained grid features to 49
tokens and concatenate the global feature vectors across the temporal dimension.

Secondly, to reflect temporal variations, we fuse the obtained feature vector with previous
frames by the GRU encoder to output the hidden vectors of the key frame. The GRU encoder
facilitates the contextual posture information fusion across the temporal dimension. Hence,
we can extract the key frame hidden vectors, performing positional encoding by the 3D
coordinates of each vertex and body joint in a human template mesh. Besides, to adjust
the input features, we first force all input tokens to 2051 dimensions by MLP (Multilayer
Perceptron). Then we sample the input features into a new eigenspace ∈ R494×1024 via a
linear layer.

Thirdly, we use the Multi-layer Focal Encoder (MFE) to regress the 3D human body
joints and grid vertices. As shown in Figure 1, the MFE input consists of grid feature queries,
joint queries, and vertex queries. For the joint queries, we use 14 key points to train the
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Figure 1: FoGMesh for 3D Human Mesh Reconstruction. Our framework takes a temporal
sequence as input to obtain grid features and global feature vectors using a CNN. The global
vectors are fed into the GRU encoder to obtain keyframe hidden vectors. The keyframe
grid features and keyframe global vectors are tokenized and fed into the MFE for 3D human
mesh.

model, including right ankle, right knee, right hip, left hip, left knee, left ankle, right wrist,
right elbow, right shoulder, left shoulder, left elbow, left wrist, neck, and head in order. For
the vertex queries, as suggested by [25] and [26], we use a coarse human mesh of 431 vertices
to accelerate the training stage. In particular, we construct the MFE with three progressively
decreasing range transformer encoder blocks, which will be described in Section 3.3. The
MFE output includes 3D coordinates of 431 vertices and 14 key points. At the final stage
of FoGMesh, the predicted coarse mesh model (431 vertices) is restored to the SMPL model
(6890 vertices) by upsampling via MLP. In addition, Mask Vertex Modeling (MVM) is used
to address the occlusion issue. We randomly mask some percentages of the input queries to
simulate occlusion, such that the learning the recovered input can improve the robustness of
the model. Nevertheless, unlike recovering masked input like Masked Language Modeling
(MLM) [18], MFE is required to regress all joints and vertices.

3.2 The CAA Module
As shown in Figure 2(a), we propose to obtain different receptive fields context informa-
tion through the dilated convolution with different rates, which are 1,3 and 5, respectively.
In specific, the dilated convolution uses different padding rates to keep the size of the out-
put features consistent, and concatenates these output features sampled via fully connected
layer. At first, the feature maps with different scales from the backbone network are taken as
input, which are F1(bs,c1,56,56), F2(bs,c2,28,28), F3(bs,c3,14,14), F4(bs,c4,7,7), and
F5(bs,c5,7,7), respectively.

Then, F5 generates feature maps C1, C2, and C3 with the same size through parallel
dilated convolution layers, and the three feature maps are concatenated to form feature map
C4. Meanwhile, F5 obtains vector C0 through the spatial attention module [42], and C0 is
multiplied with C4 to finally get the output feature map F

′
(

bs, f
′
,7,7

)
.

In parallel, F1 is downsampled and concatenated with F2, with the resulting feature map
being downsampled and concatenated with F3, and so on. And finally concat with F

′
to get

Fout (bs, fout ,7,7 ). Fout goes through an Average Pooling layer and then is flattened to a 1D
vector which is the image vector.
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Figure 2: The architecture of the proposed CAA Module and MFE module. (a) The feature
map F5 is processed by the spatial attention module and the dilated convolution with rates
of 1, 3, and 5 respectively. The dilated convolutions use different padding rates to keep the
size of the output features consistent. Feature maps F1, F2, F3, and F4 are fused through
downsampling and concatenating, and then concatenated with the processed feature map
based on the feature map F5. (b) The MFE consists of three focal encoder blocks with the
same number of input tokens.

3.3 The Multi-layer Focal Encoder

Inspired by the idea of [45], we combine fine-grained local and coarse-grained global inter-
action in our proposed MFE encoder module as shown in Figure 2(b). The overall structure
of the focal encoder is similar to the traditional Transformer encoder, and we incorporate the
window attention [45] to model fine-grained local interactions.

MFE consists of three encoder blocks with the same number of tokens, including 49 grid
feature tokens, 14 joint queries, and 431 vertex queries. But their hidden dimensions are
different. When the input tokens are given and the contextual features are generated by the
Multi-Head Self-Attention (MHSA) proposed by Vaswani et al. [38], we can improve the
local interactions with the help of window attention. In brief, firstly, the input features are
divided into different levels, corresponding to the different granularity of attention. Secondly,
different sizes of windows are set for different levels, and the self-attention operation is
performed at the window level. Finally, the extracted fine-grained and coarse-grained tokens
are concatenated to obtain local and global information. After that, our MFE sequentially
reduces the dimensions to map the inputs to 3D joints and mesh vertices, simultaneously.

Although MHSA facilitates extracting long-range dependencies by using multiple self-
attention functions in parallel to learn context representation, it is inefficient in capturing
fine-grained local information in complex data structures. To explore the informative poten-
tials of vertex-vertex relationships, we propose to design the Focal Transformer Block (FTB).
As shown in Figure 2(b), FTB performs window attention where the self-attention is con-
ducted at the window level. Specifically, FTB can effectively capture both short-term and
long-term dependencies via performing fine-grained self-attention in the local regions and
coarse-grained self-attention in the global regions.

Moreover, we use a template human mesh to reflect the positional information of vertex-
vertex interactions, which is inspired by the widely discussed positional encoding [12, 21,
25, 26]. Similar to [26], the grid features are tokenized to 49 tokens, with each token being a
1024-Dim vector when the keyframe grid features and hidden vectors are given. The 2048-
Dim keyframe hidden vectors are concatenated with the positional encoding vectors, using
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the 3D coordinates of each vertex and body joint in a human template mesh. Finally, we
apply MLP to make the size of all the input tokens consistent.

In addition, we employ a similar training strategy as used in [25]. On this basis, we
use L1 loss to train our model for these regressed 3D vertices, 3D joints, and 2D projected
body joints. The relevant function names are LV , LJ , and Lpro j

J , respectively. Notably, the
3D joints can be obtained from the predicted 3D vertices by using a pre-defined regression
matrix [5, 17, 21]. Besides, we also use L1 loss for supervising these regressed 3D joints,
termed as Lreg

J . The overall objective is defined as:

L= α ×
(
LV +LJ +Lreg

J

)
+β ×Lpro j

J , (1)

where α and β indicate the availability of 3D and 2D ground truths, respectively.

4 Experimental Results

In this section, we first introduce the benchmarking datasets and metrics used for evaluation.
Then, we report the results obtained by our method on all the benchmarks to compare with
the state-of-the-art approaches. Finally, we analyze the impact of each innovative component
of our FoGMesh method in the ablation study.

4.1 Datasets and Experimental Settings

We evaluate our model on two benchmarking datasets, 3DPW [39] and Human3.6M [16].
3DPW is an outdoor-image dataset with 2D and 3D annotations. 3DPW contains 60

video sequences with 22K images for training and 35K images for testing. Following the
previous methods [5, 17, 19, 20], we follow the released train-test splits when conducting
experiments on 3DPW.

Human3.6M is an indoor and large-scale dataset containing accurate 3D human poses.
Each image has a subject performing a different action under 4 different viewpoints, resulting
in 3.6M images in total. However, the ground-truth 3D mesh is inaccessible due to the
license issue. Therefore, we use the pseudo-labels generated by SMPLify-X [34]. Following
the common setting, we use the subjects S1, S5, S6, S7, and S8 for training, and keep the
subjects S9 and S11 for testing.

We compare our results with metrics as follows. The unit for the metrics is millimeters
(mm).

• MPVE. Mean-Per-Vertex-Error (MPVE) [33] measures the Euclidean distances be-
tween the ground truth vertices and the predicted vertices.

• MPJPE. Mean-Per-Joint-Position-Error (MPJPE) [16] measures the Euclidean dis-
tances between the ground truth joints and the predicted joints.

• PA-MPJPE [47]. It computes MPJPE after processing 3D alignment using Procrustes
Analysis (PA) [10] to ignore the scale and rigid pose.
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Method 3DPW Human3.6M
MPVE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓

HMR [17] - - 81.3 88.0 56.8
SPIN [20] 116.4 - 59.2 - 41.1
RSC-Net [44] - 96.4 59.0 - -
Pose2Mesh [5] - 89.2 58.9 64.9 47.0
VIBE [19] 99.1 82.0 51.9 65.6 41.4
METRO [25] 88.2 77.1 47.9 54.0 36.8
Graphormer [26] 87.7 74.7 45.6 51.2 34.6
Ours 85.2 74.1 45.5 54.6 35.6
Table 1: Comparisons with relevant methods on 3DPW and Human3.6M datasets.

4.2 Main Results

We compare our method with previous related approaches by reconstructing human mesh on
3DPW and Human3.6M datasets, as listed in Table 1. We reproduced the results by using
the provided checkpoints. On 3DPW, our method achieves better performance compared to
the two relevant methods, METRO [25] and Graphormer [26]. For instance, our method
improves MPVE by 2.5 and 3 mm compared to Graphormer and METRO, respectively. Be-
sides, FoGMesh obtains remarkable improvement on all metrics compared to other methods.

As for Human3.6M, most compared models were trained on the same datasets, except
METRO and Graphormer, which are trained on a large-scale multiple 2D and 3D dataset,
including Human3.6M, COCO [27], MUCO [31], UP3D [22], MPII [1], and evaluated on
Human3.6M. Therefore, METRO and Graphormer exhibit advantages by involving more
training datasets. In contrast, other models only use the Human3.6M training set. However,
our approach can still achieve competitive results with Graphormer. More importantly, our
approach also performs better than METRO and other methods in terms of PA-MPJPE.

We also compare our method with other state-of-the-art methods including a video-based
method, VIBE, as shown in Table 1. The results show that FoGMesh outperforms previous
state-of-the-art methods with a large margin. Since our target is human mesh recovery in
high-speed motion scenes, we also evaluated our method on the 3DPW test set that processed
to simulate the high-speed motion blur as shown in Table 2. The last two rows indicate
whether a GRU is used to learn the keyframe feature representations in our approach, the
necessity of which will be discussed in Section 4.3. The results show that our method can
maintain better generalization and stability in the high-speed motion scenes. Additionally,
we use our method to make predictions for the outdoor data sampled from the processed
3DPW test set, and we simulate the high-speed motion blur by processing the data, as shown
in Section 4.3.

4.3 Ablation Study

We conduct an ablation study on the 3DPW dataset to further evaluate the proposed method.
Effectiveness of CAA Module and Focal Encoder. As mentioned in Section 3.2, we

propose to integrate the CAA module in HRNet, Table 3 reports the comparison between
using and not using the CAA module in the backbone network. The results show that using
the CAA module improves robustness in reconstructing 3D human mesh. To be specific,
using HRNet-CAA as our backbone improves MPVE, MPJPE, and PA-MPJPE by 2.6, 2.7,
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Method Processed 3DPW
MPVE↓ MPJPE↓ PA- MPJPE↓

METRO 166.0 148.9 87.3
Graphormer 141.4 125.3 74.1

FoGMesh (- GRU) 150.6 132.9 80.2
FoGMesh (+ GRU) 121.1 106.1 66.5

Table 2: Comparisons with METRO and Graphormer on processed 3DPW. All models are
not fine-tuned on processed 3DPW dataset. The bottom two rows indicate that our method
does not use GRU and does use GRU, respectively.

Method MPVE↓ MPJPE↓ PA-MPJPE↓
HRNet 88.2 77.1 47.9
HRNet+CAA 85.6 74.4 46.8
HRNet+CAA+Focal 85.2 74.1 45.5

Table 3: Ablation study with our proposed modules.

and 1.1 points, respectively, compared to HRNet. We further examine the focal encoder
based on incorporating the CAA module into the backbone. As shown in Table 3, our method
achieved our best results with the CAA module and focal encoder. Furthermore, we visualize
the attention between specified joints and vertices, where brighter color indicates stronger
attention, as shown in the fourth column in Figure 3. We observe that FoGMesh finds strong
interactions between joints and adjacent vertices.

Analysis of GRU Encoder. To adapt our method to video data, we incorporate the GRU
encoder so that the proposed method is no longer limited to single-frame image training.
However, our experimental results show that using the GRU encoder can maintain better sta-
bility in video data, especially in a high-speed motion environment, as shown in Table 2. Our
method outperforms METRO and Graphormer by a significant amount, and also proves that
learning feature representations of keyframe by using GRU can maintain better robustness in
high-speed motion scenes. Moreover, we used our method to make predictions for outdoor
data that we sampled from the 3DPW dataset. When the background is not complex and the
human features are obvious, all the methods will give slight deviation prediction results, as
illustrated in the top two rows. However, FoGMesh also produces smoother results and more
closely matches the target than other methods. In addition, FoGMesh outperforms even more
than other methods when the scene is complicated and the targets are ambiguous, such as in
the bottom three rows of Figure 3.

5 Conclusion

In this paper, we introduced FoGMesh, a new Transformer-based architecture that incorpo-
rates focal attention and the GRU encoder for reconstructing high-quality 3D human meshes
from video sequences or a single image. The experimental results obtained on two well-
known benchmarking datasets demonstrated a better generalization capability of the pro-
posed method as compared with the existing state-of-the-art approaches. In addition, our
experiments validated the effectiveness of cascading multi-scale features and modeling lo-
cal interactions in Transformer in 3D human mesh recovery. Our FoGMesh model has the
potential to facilitate 3D human reconstruction, but there is still room for improvement in
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Figure 3: Qualitative results of FoGMesh. The top two rows of the first column are the
original image, and the bottom three rows are the images that are processed to simulate
high-speed motion. All models are not fine-tuned on processed 3DPW dataset. The last two
columns are attention visualizations and predictions of FoGMesh.

our method. For example, we will further improve the generalization ability of our model in
reconstructing human body parts and explore the method for better integrating Transformer
and CNN in 3D human mesh recovery in our future work.
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