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Abstract

The goal of multi-label image classification is to predict a set of labels for a single
image. Recent work has shown that explicitly modeling the co-occurrence relationship
between classes is critical for achieving good performance on this task. State-of-the-
art approaches model this using graph convolutional networks, which are complex and
computationally expensive. We propose a novel, efficient association module as an al-
ternative. This is coupled with a transformer-based feature-extraction backbone. The
proposed model was evaluated using two standard datasets: MS-COCO and PASCAL
VOC. The results show that the proposed model outperforms several strong baseline
models.

1 Introduction
Image classification is a fundamental task in computer vision. For a traditional image clas-
sification problem where each image contains a single object, the learning task for a given
image is to predict the category of the object contained in it. However, real-world images
often contain multiple objects and is essentially complex, which makes it challenging for the
model to understand the scene. Therefore, multi-label recognition is an essential task in our
natural world. Recent works show outstanding improvement on the multi-label recognition
task by different model architectures [12, 16], new loss function definition [22], and label
association relationship exploration by graph learning [4, 29]. However, these methods in-
crease implementation complexity. Our work achieves the same, or better, accuracy with a
significantly simpler implementation. In particular, we adopt the network backbone with a
transformer and propose a new module for label correlation computation.
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Figure 1: The task of multi-label recognition is predicting the object labels in the input
image. We can apply the object association relationship to assist our final prediction; for
example, a bag is more likely to be associated with a person than a dog. Therefore, given an
image with a dog, the appearance probability of a bag in the same image is low.

The convolutional neural network (CNN) has become a dominant technique in vari-
ous computer vision tasks, such as classification [15], segmentation [20], and object de-
tection [11]. For the multi-label recognition task, the ResNet, such as ResNet101, has been
widely employed in many works [3, 4, 12, 31]. Currently, the TResNet [22] is often con-
sidered as an alternative to the ResNet due to its better trade-off between efficiency and
performance. However, both of them suffer from a drawback with the convolution opera-
tion, which concentrates on the local-area computation and thus omits the global informa-
tion extraction. For images, especially multi-label images with multi objects in the same
scene, the global information is essentially important for classification. It is difficult for the
scene understanding by only concentrating on the local regions while neglecting the object
dependency relationship. Meanwhile, the vision transformer (ViT) [8, 19, 27], built with
the multi-head self-attention module, is capable of the long-range dependency to extract the
global information of the whole image with different views. ViT makes up for the flaw of
the CNN model and is an ideal backbone for the multi-label recognition task.

The object association has been studied in multi-label classification for recent approaches.
The graph convolutional network (GCN) is the main focus in analyzing the label correlation
for the final prediction boosting. However, the GCN requires the correlation matrix as prior
knowledge, which is challenging in realistic implementation. To address this issue, it is
proposed to approximately learn the correlation matrix with the training set [4]. However,
with this strategy, it tends to have an overfitting problem for the learned correlation matrix,
and thus the learning performance is not guaranteed for the testing set. Moreover, the GCN
performs multi-matrix multiplication, which is complex and computationally expensive.

In this work, we propose a model with a transformer as the backbone and a new associ-
ation module (AM) for the label-correlation computation. The transformer-based backbone
can effectively extract the discriminative feature for further analysis. The AM has a more
straightforward architecture than the GCN model and is more efficient without the graph con-
volution operation. Meanwhile, the AM can dynamically learn the label correlation without
any prior or extra information.

We summarize the main contributions of our work as follows:
• We propose to build a simple yet effective end-to-end transformer-based framework
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for multi-label classification.
• We propose a new association module to explore label correlation. The module is

learnable based on the features and is computation-efficiency compared with the graph
convolutional operation.

• We conducted experiments on different benchmark datasets: MS-COCO and PASCAL
VOC and obtained superior or comparable performance.

2 Related Work

2.1 Transformer
Recently, the transformer has shown impressive potential in computer vision with its long-
dependency ability for global information aggregation. Dosovitskiy et al. [8] propose the
Vision Transformer (ViT) to bridge the transformer-based model for image classification.
By splitting the image into a number of fixed-size patches, the block-stacked transformer
encoder can conduct the feature extraction on visual task. Carion et al. [1] apply the trans-
former on the object detection task with a model named DETR. Wu et al. [27] propose the
CvT by adopting the convolutional layer for the low-level feature extraction and forwarding
the feature to the transformer. Liu et al. [19] design a new transformer architecture named
Swin by patch shifting and merging and demonstrate its generalization on different vision
tasks. For the transformer application on multi-label recognition task, Lanchantin et al. [16]
propose a Classification Transformer (C-Tran) to combine the transformer with inferred la-
bel mask together for the final prediction. Cheng et al. [5] propose a model named MlTr by
merging a cross-attention module on the transformer encoder to improve the performance.
Our study mainly leverages the transform as the backbone for multi-label recognition. We
use Swin and CvT as the backbone for feature extraction and stack the association module
(AM) to boost the final prediction. Compared with C-Tran, we don’t need extra or prior in-
formation but only the input image. Compared with MlTr, our model has simpler architecture
and gains better performance.

2.2 Loss Function
The commonly used loss functions for multi-label recognition are cross entropy and multi-
label soft margin loss, which ignore the positive-negative imbalance problem for the labels.
Asymmetric loss (ASL), a variant of focal loss [22], is proposed to overcome this issue by
asymmetric focusing and asymmetric probability shifting to dynamically operate on the neg-
ative and positive samples. ASL shows tremendous improvement and becomes the standard
loss on the multi-label recognition tasks. In our implementation, we apply the ASL as the
loss function.

2.3 Label Association
Considering that multi-objects appear in the same image, the label association is a good topic
to explore in the multi-label recognition study. Therefore, the graph convolutional network
(GCN) [14] is adopted to analyze the label correlation. MLGCN [4] proposes to learn a static
correlation matrix by counting the label relation of the training set and develop a GCN-
based classifier to boost the final prediction. SSGRL [2] proposes to learn the dynamic
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correlation matrix based on the extracted feature with the LSTM model. ADDGCN [29]
simplifies the correlation matrix learning procedure by applying the class activation module
(CAM) [30]. Different from graph learning in exploring the label association relationship,
by graph operation, we propose to construct the learnable object association matrix by our
end-to-end model directly. Besides, our initial attempt to combine the GCN module with
the ViT shows that the whole model is unstable, with either a static graph (MLGCN) or
a dynamic graph (ADDGCN). During the training, there is the NaN value on the gradient
descent when combining the ViT with GCN module.

3 Approach
In this section, we provide a detailed introduction of our method. First, we summarize the
high-level problem in our study. Second, we show the overall network architecture. Then, we
introduce detailed information about the transformer and association module basics. Next,
we show our fusion operation. Finally, we discuss the loss function used for training.
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Figure 2: The overall architecture of the proposed model.

3.1 Problem Formulation
For an input image x with a set of category binary label y = [y1,y2, ...,yC],yi ∈ {0,1}, the
multi-label recognition task is to predict whether each category appears or not in the image.
Label yi = 1 means that the i− th category is presented in the image; otherwise, yi = 0.
The target of multi-label recognition is to build up a classifier, f , to predict the probability
p = [p1, p2, ..., pC] of the appearance of each category of the input image x: y = f (x).

3.2 Architecture
Figure 2 illustrates the overall architecture of our model. We first leverage the transformer
as the backbone feature extractor for an input image. The output feature of the backbone
is a feature embedding L ∈ Rd . Then, We forward the embedding L to the AM module to
calculate the association matrix A ∈ RCxC and output N1 ∈ RC. Depending on the fusion
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operation, we can forward the embedding L through a fully connected layer and get another
output N2 ∈ RC. More details will be discussed in the fusion section.

3.3 Basics of Transformer
Considering the high performance of the transformer in different vision tasks, we leverage
the transformer as the backbone in our study. So far, many works study the variants on
ViT [8] structure, such as the patch shifting and merging in Swin [19] and convolutional
layer hybrid structure in CvT [27]. For simplification, we summarize the transformer basics,
which are treated as the standard operation.

Given an image x, the patch embedding is to project the 2D image into a 1D embedding
z0 by the patch-partitioning operation at the beginning of the transformer:

z0 = PatchEmbedding(x), (1)

after the initial patch embedding operation, the consecutive transformer encoder blocks are
computed as:

ẑl = MSA(LN(zl−1))+ zl−1, (2)

zl = MLP(LN(ẑl))+ ẑl , (3)

where ẑl and zl annotate the output feature of the multi-head self-attention (MSA) module
and multi-layer perceptron (MLP) module of block l, respectively. LN represents the layer
normalization.

3.4 Association Module (AM)
We want to efficiently capture the co-occurrence information with easy implementation. Our
association module (AM), motivated by GCN [4, 29], is to aggregate object association in-
formation, which is used to boost the final prediction. To dynamically capture the object
association, we prefer to learn the association matrix through the extracted feature L of the
transformer-based backbone. Since the feature embedding L contains the potential informa-
tion of each object category, it is the potential to access the object association by appropriate
module design. In the implementation, we forward the extracted embedding feature L ∈ Rd

through the AM. We firstly unsqueeze the L and conduct a 1D convolution to project 1D
embedding to 2D, {K,M} ∈ RC×d :

K/M =Conv1D(unsqueeze(L,1)). (4)

We transpose the feature K and conduct the multiplication with K itself attached a sigmoid
function to calculate the association matrix A ∈ RC×C:

A = sigmoid(K ×Kt), (5)

we finally multiply feature M with association matrix A and apply another Conv1D to get
the embedding feature N1:

N1 =Conv1D(M×A). (6)
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It should be noted that there is a stark difference between the self-attention module
(SAM) [24] and our model. The purpose of the association module is dynamically learning
and aggregating the inter-class correlation through model training. Therefore, association
module works on the class domain. Meanwhile, self-attention works on the spatial domain
of the input image. A more straightforward view of the difference is by the implementa-
tion. Given a dataset contains C classes, we have an input feature I ∈ RD×H×W , where D
is the channel, H is the height, and W is the width. The attention map MSA ∈ RN×N of the
self-attention is to calculate the pixel-wise similarity, where N = H ×W . However, the as-
sociation map A ∈ RC×C, where C is the number of the task classes. As for the computation
complexity, it is straightforward that our module needs less than the GCN module, which
requires multiple-times matrix multiplication with the same input.

3.5 The Fusion operation

Fully-Connected 

AM

Embedding
Feature: L

Embedding
Feature: 

Embedding
Feature: 

α

β

Figure 3: The fusion strategy in our study.

We discuss the potential fusion strategy in this section. Our default way is with our asso-
ciation module only, we also experimented with the model without our association module,
and we found it good to combine them together. Illustrated by Figure 3, instead of the output
feature N1, we can simply conduct a fully-connected layer on embedding L to get another
output feature N2 ∈ RC. Therefore, we can predict the final output O ∈ RC by interpolating
the N1 and N2 as follows:

O = αN1 +βN2, (7)

where α and β are the coefficients of the embedding feature N1 and N2, respectively. There
are different strategies to set values for α and β :

• equal weights, α and β are equal to 0.5: α = β = 0.5
• single path, we use the embedding N1 only: α = 1,β = 0
• learnable path, we set the α as a learnable parameter and let β equal to 1: α =

learnable,β = 1
We set equal weights as our final fusion operation. More details are shown in the supple-
mental material.
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3.6 Loss Function
The cross-entropy loss is the basic loss function for the multi-label recognition problem.
However, it neglects the multi-label imbalance problem, where each sample image contains
only a sufficiently small number of positive objects from the label set. Therefore, we adopt a
new asymmetric loss (ASL) [22], a variant of focal loss, to narrow the imbalance issue. The
ASL is defined as:

ASL =− 1
C

C

∑
k=1

yk · (1− pk)
γ+log(pk)+(1− yk) · (pk)

γ−log(1− pk) (8)

where the γ+ and γ− values are the asymmetric focusing parameters to decouple the influ-
ence of the positive and negative sample. In our implementation, we set γ+= 0 and γ−= 2
as default. Meanwhile, due to the long-tail distribution of the object correlation, we find out
that the association matrix A ∈ RC×C is easily overfitted. Therefore, we use the L2 regular-
ization on the association matrix A with a nonnegative balancing parameter θ , which leads
to the overall training loss in the following:

Loss = ASL+θ∥A∥2. (9)

4 Evaluation

4.1 Implementation and Metrics
Transformer Encoder. For efficient feature extraction, we adopt pre-trained Swin-L and
CvT-w24 as the backbone, respectively. Based on the designation of Swin [19], we set the
channel number of the hidden layers in the first stage to be C = 192 and the layer number of
each Swin block to be {2,2,18,2}. We adopt the pre-trained Swin model from "timm" [26].
For the CvT-w24 model structure parameters, the hidden embedding size of each block on
CvT-w24 is {192,768,1024}, the layer number of each CvT-w24 block is {2,2,20}. The
pre-trained CvT-w24 model is accessed from CvT [27] official implementation.

Training. Our models are implemented using PyTorch. We train the model with 40
epochs using Adam [13] optimizer and 1-cycle policy [23]. The maximal learning rate is
1e− 4. The batch size is 16. For augmentation, we use Cutout [7] with a factor of 0.5
and RandAugment [6]. For simplification, we normalize the image size to 0 ∼ 255. For
regularization, we use True-wight-decay [21] with value 1e− 4. We follow the ASL [22]
implementation to use exponential moving average (EMA) to model parameters with a decay
of 0.9997. The reported best performance is either the original model or the EMA model.
The mixed precision is used to speed up the training processing.

Metrics. We follow the conventional setting of the previous works [5, 16, 29] on model
evaluation. The threshold of the image label is 0.5. We report the mean average precision
(mAP), which is the most important metric in the task of multi-label recognition.

4.2 Experiment
4.2.1 MS-COCO

Microsoft COCO [17] is a widely used benchmark for multi-label image recognition. It
contains 82,801 training images and 40,504 validation images. There are 80 categorized
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Model Resolution mAP

SRN [31] 224×224 77.1
ResNet101 [12] 224×224 78.3
CADM [3] 448×448 82.3
ML-GCN [4] 448×448 83.0
KSSNet [18] 448×448 83.7
SSGRL [2] 576×576 83.8
C-Tran [16] 576×576 85.1
ADD-GCN [29] 576×576 85.2
ASL(22k) [22] 448×448 88.4
MlTr-l(22k) [5] 384×384 88.5
Swin-L(22k) [19] 384×384 89.2
Swin-L-AM(22k)(Ours) 384×384 89.8
CvT-24w(22k) [27] 384×384 88.9
CvT-24w-AM (22k)(Ours) 384×384 90.1

Table 1: Results of the MS-COCO dataset under different state-of-the-art models. Take the
mAP as the main reference, our models outperform the previous works. All metrics are in
%. The 22k denotes the model pre-trained with ImagNet-22k.

objects in this dataset, with an average of 2.9 object labels per image. Since this data set
lacks of test set, the validation images are often used for evaluation.

Quantitative results are reported in Table 1. We compare our model with 10 baseline
models, including SRN [31], ResNet101 [12], CADM [3], ML-GCN [4], KSSNet [18], SS-
GRL [2], C-Tran [16], ADD-GCN [29], ASL [22], and MlTr-l [5]. The proposed model
CvT-24w-AM achieves the performance with mAP = 90.1, outperforming the previous ap-
proaches. Another transformer backbone model Swin-L-AM achieves the mAP = 89.8,
which beats most of the baselines. To further validate the significance of adopting the AM in
our model, we perform ablation study as follows. We remove the AM from our model and
only leverage the transformer backbone to obtain two models as baselines, namely Swin-L
and CvT-24w, respectively. Experimental results show that the performances of both Swin-L
and CvT-24 are significantly improved by integrating the AM, which confirms the effective-
ness and significance of adopting the AM in our model.

4.2.2 PASCAL VOC

Model areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
CNN-RNN [25] 96.7 83.1 94.2 92.8 61.2 82.1 89.1 94.2 64.2 83.6 70.0 92.4 91.7 84.2 93.7 59.8 93.2 75.3 99.7 78.6 84.0
Fev+Lv [28] 97.9 97.0 96.6 94.6 73.6 93.9 96.5 95.5 73.7 90.3 82.8 95.4 97.7 95.9 98.6 77.6 88.7 78.0 98.3 89.0 90.6
MCAR [10] 99.7 99.0 98.5 98.2 85.4 96.9 97.4 98.9 83.7 95.5 88.8 99.1 98.2 95.1 99.1 84.8 97.1 87.8 98.3 94.8 94.8
ML-GCN [4] 99.5 98.5 98.6 98.1 80.8 94.6 97.2 98.2 82.3 95.7 86.4 98.2 98.4 96.7 99.0 84.7 96.7 84.3 98.9 93.7 94.0
SSGRL [2] 99.7 98.4 98.0 97.6 85.7 96.2 98.2 98.8 82.0 98.1 89.7 98.8 98.7 97.0 99.0 86.9 98.1 85.8 99.0 93.7 93.4
ADD-GCN [29] 99.8 99.0 98.4 99.0 86.7 98.1 98.5 98.3 85.8 98.3 88.9 98.8 99.0 97.4 99.2 88.3 98.7 90.7 99.5 97.0 96.0
Swin-L-AM (22k)(Ours) 99.8 92.7 99.4 99.3 90.3 98.2 94.0 97.2 89.7 99.4 97.1 86.5 99.3 96.5 89.8 93.1 99.1 94.2 99.6 88.1 96.0
CvT-24w-AM (22k)(Ours) 99.8 98.4 99.6 99.2 96.0 98.7 95.8 99.2 94.0 99.4 96.8 98.2 99.5 99.2 92.2 95.5 99.5 96.7 99.8 97.4 96.2

Table 2: Results of the VOC2007 dataset under different state-of-the-art models. We report
the mAP of different methods. For each category, we show the accuracy per class. All
metrics are in %. The 22k denotes the model pre-trained with ImagNet-22k.

PASCAL Visual Object Classes Challenge (VOC2007) [9] is another widely used datasets
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used for multi-label recognition. VOC2007 contains 5,011 images as the train-val set and
4,952 images as the test set. The number of the class is 20, with 2.5 categories per image.
In the literature, some works adopt some extra datasets in the training stage for pre-training,
such as the MS-COCO dataset. In our experiments, for fair comparison we compare our
model with the baseline methods that are pre-trained with ImageNet-1k or ImageNet-22k
only and show the results in Table 2. Compared with baselines, our proposed models achieve
superior performance with mAP = 96.0 of the Swin-L-AM model and mAP = 96.2 of the
CvT-24w-AM model, which achieves state-of-the-art performance. Besides, we conduct the
experiment of the baselines without AM module (backbone Swin-L and CvT-24w only), and
get mAPSwin−L = 95.8 and mAPCvT−24w = 96.0, respectively.

In terms of each category accuracy, both of our models outperform other baselines in the
tiny objects, such as ‘bottle’ and ‘plant’. This contribution is jointly by the transformer-based
backbone and association module. In a multi-labeling classification task, the small object is
one of the bottlenecks of previous convolutional neural network (CNN) based models. The
transformer is built upon the self-attention module, which efficiently captures the feature
of pixel granularity. Meanwhile, the association module can boost the performance by the
object correlation (e.g. a person with a bottle).

4.3 Association Map Visualization

The AM map with L1 norm

The AM map with L1+L2 norm

The AM map with L2 norm

The AM map with Nuclear norm

The original AM map 

Figure 4: The visual illustration of association matrices that are learned with different regu-
larization terms on the VOC2007 dataset.
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norm mAP
L1 95.4
L2 96.0
L1 +L2 92.2
Nuclear norm 95.8

Table 3: The results of the loss function with different norm strategies on the benchmark
VOC2007.

In our model, we adopt the L2 regularization for the association map of the object. In
this section, we conduct experiments with the same coefficient θ = 0.1 to show it is more
proper to adopt L2 regularization than the other regularizations, such as L1 regularization,
elastic-net (L1 +L2) regularization, and the nuclear norm regularization. We visually show
the object AM in the cases of adopting different regularizations in Figure 4. From the figure,
it is observed that the AM map memorizes the most object association without any regular-
ization term, which implies a long-tail distribution issue similar as the MLGCN [4]. By the
regularization constraint, the AM map efficiently captures the object association with sig-
nificantly reduced overfitting effects. It is seen that both the L2 and the nuclear norms have
stronger constraining effects than the L1 norm. We quantitatively show the best performance
of our model with different regularization terms in Table 3, where it is found that the L2
norm promotes the learning performance better than the others. This observations confirms
the properness of adopting the L2 norm in our model.

5 Conclusion
We proposed AssocFormer, which combines a transformer backbone with a light-weight
association module, for the task of multi-label image classification. This approach matches
or outperforms prior work on two standard public benchmark datasets, while simultaneously
being simpler to implement. We found that the form of regularization on the association
matrix was critical for achieving strong quantitative performance. We conjecture that this is
due to the long-tail distribution of class-pair co-occurrences (with many pairs co-occurring
infrequently, but a few that commonly co-occur).
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