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We provide the implementation details in Sect. 1. For the code and models of this paper,
please refer to our project page: https://www.robots.ox.ac.uk/~vgg/research/turbo/.

1 Implementation Details
Architectural Details. In our implementation, we adopt the standard ViT-B architectures
as [4, 10]. Specifically, the encoder is a 12-layer transformer with 768 feature dimension
and the light-weight decoder is a 8-layer transformer with 512 feature dimension. The input
spatial-temporal patch has a size of t × h×w = 2× 16× 16. We use sinusoidal positional
embeddings [11]. For both the action classification and long-video activity classification
tasks, we pass the encoder’s final-layer ‘CLS’ token into a linear layer for classification.
For learning video-language representation, we project both the video feature and language
feature with a 2-layer MLP, then compute the InfoNCE loss LNCE as introduced in the main
paper Page 5.

Config Act. Classification V-L Training Long-video Activity Classification
ViT-B encoder depth 12 layers 12 layers 12 layers

ViT-B encoder dimension 768 768 768
decoder depth 8 layers 8 layers 8 layers

decoder dimension 512 512 512
optimizer AdamW [7] AdamW AdamW

base learning rate 1e-3 1e-4 3e-4
weight decay 0.05 0.05 0.05

learning rate schedule cosine-decay [8] cosine-decay cosine-decay
warm-up epochs 10 0.5 10(BF), 5(COIN)
training epochs 100 5 100(BF), 50(COIN)

repeated sampling [2, 5] 1 4 4
augmentation RandAug(9,0.5) [1] MultiScaleCrop RandAug(9,0.5)

label smoothing [9] 0.1 - 0.1
mixup [13] 0.8 - 0.8
cutmix [12] 1.0 - 1.0

drop path [6] 0.1 0.0 0.1

Table 1. Implementation details of action classification, video-language training and long-video
activity classification tasks.

Training Details. The details of training action classification, video-language training and
long-video activity classification tasks are listed in Table 1. Note that, for action classifi-
cation and long-video activity classification tasks, we use the same data augmentation as
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in [4, 10]; for video-language training, we only use basic cropping augmentation due to the
adequate amount of training data from the HTM-AA [3] dataset (3.3M clip-sentence pairs).
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