FIND: An Unsupervised Implicit 3D Model of Articulated Human Feet

Oliver Boyne, James Charles, Roberto Cipolla University of Cambridge

BINNE 2022

SIN UNIVERSIT SIN CAMBRIDGE

Paper ID: #0630

Motivation

- Generative models of human bodies, hands and faces have been well developed
- Foot models are a relatively unexplored category modelling feet is useful for shoe fitting and orthotics
- Challenging task due to limited available data

Learning 2D parts

Contributions

Toe flexion

T-Pose

Medial rotation, Dorsiflexion

Toe Abduction

Eversion

Figure 1: 5 scans from Foot3D dataset with pose descriptions To develop an accurate generative foot model, we contribute:

- **FIND** (Foot Implicit Neural Deformation) model to generate explicit, textured feet with pose, shape and texture
- Unsupervised shape/pose disentanglement

Figure 3: Pipeline for predicting per-pixel classes from an input image

- StyleGAN generates synthetic foot images
- Encode foot images to StyleGAN style codes
- k-means clustering on StyleGAN feature maps produces unsupervised 'part' segmentations
- Train classifier to predict these parts
- Fully differentiable image-to-parts pipeline (Figure 3)
- At train time, use pipeline to learn parts directly on template mesh of FIND
- For inference on 2D images, use cross entropy between image-to-parts pipeline and projected 3D FIND parts

Experimental Results

- Unsupervised part-based learning
- Foot3D Dataset of high resolution 3D foot scans

Figure 2: FIND model overview

- Define template mesh
- Use latent codes z_s (shape), z_p (pose), z_t (texture)
- Sample point x on template surface

- Model evaluated by fitting to Foot3D validation scans, with 3D chamfer loss
- Quantitative results

Model	Trained on	Chamfer µm	Keypoint, mm	loU
SUPR	4D foot scans	48.0	11.2	0.756
PCA	Foot3D	11.2	15.7	0.892
FIND	Foot3D	7.3	5.9	0.931

Qualitative results

• Feed positional encoding $\gamma(x)$ through MLP F to predict colour and displacement

 $F(\gamma(x), z_s, z_p, z_t) \rightarrow (\Delta x, c)$

- Unsupervised pose representation learning
 - Constraint: feet of same identity have same z_s •
 - Contrastive loss: similar poses have similar z_p ; different poses have different z_p
- Resolution of template model chosen depending on task (*eg* low vertex count for mobile applications)

Figure 4: Renders of our model, and baselines, optimised in 3D to fit to our ground truth scans

ollieboyne.github.io/FIND

