
D-STEP: DYNAMIC SPATIO-TEMPORAL PRUNING 1

D-STEP: Dynamic Spatio-Temporal Pruning
Avraham Raviv
avraham.r@partner.samsung.com

Yonatan Dinai
yonatan.dina@samsung.com

Igor Drozdov
igor.drozdov@partner.samsung.com

Niv Zehngut
niv.z@samsung.com

Ishay Goldin
ishay.goldin@samsung.com

Samsung Israel R&D Center
Tel Aviv
Israel

Abstract

Video processing requires analysis of spatial features that are changing over time. By
combining spatial and temporal modelling together, a neural network can gain a better
understanding of the scene with no increase in computation. Spatio-temporal modeling
can also be used to identify redundant and sparse information in both the spatial and
the temporal domains. In this work we present Dynamic Spatio-Temporal Pruning, D-
STEP, a new, simple, yet efficient method for learning the evolution of spatial mapping
between frames. More specifically, we used a cascade of lightweight policy networks to
dynamically filter out, per input, regions and channels that do not provide information
while also sharing information across time. Guided by the policy networks, the model is
able to focus on relevant data and filters, avoiding unnecessary computations. Extensive
evaluations on Something-Something-V2, Jester and Mini-Kinetics action recognition
datasets demonstrate that the proposed method shows a significantly improved accuracy-
compute trade-off over the current state-of-the-art methods. We release our code and
trained models at https://github.com/DynamicAR/DSTEP.

1 Introduction
The exponential growth in online video applications creates a huge demand for systems that
can recognize and localize actions, events, objects, and interactions in video. Computers
with sufficient computing power can handle those heavy tasks in real-time, but devices with
limited resources, such as mobile phones, cameras and AR/VR glasses, require more efficient
algorithms.

Recently there has been a lot of focus on building lightweight network architectures.
MobileNet [11, 12, 23] and EfficientNet [25] are popular architectures proposed for reduced
computations. Although they have achieved notable success, they are geared towards image-
level tasks such as classification and object detection, and are suboptimal for video analysis.

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Howard, Sandler, Chu, Chen, Chen, Tan, Wang, Zhu, Pang, Vasudevan, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Sandler, Howard, Zhu, Zhmoginov, and Chen} 2018

Citation
Citation
{Tan and Le} 2019

https://github.com/DynamicAR/DSTEP

2 D-STEP: DYNAMIC SPATIO-TEMPORAL PRUNING

5 10 15 20 25 30 35 40
GFLOPS

25

30

35

40

45

50

55

Ac
cu

ra
cy

 (%
)

TSN

AdaFuse

LSTM

EcoLite

Ours
TSM

TRN
2x

+2.1

AdaFuse

Ours

Ours
Existing Networks

Figure 1: Something-Something-V2 Validation Accuracy vs FLOPs. Existing networks
are marked with a circle, while the diameter of the circle is proportional to the model’s
size. Our model (blue triangles) provides comparable accuracy to AdaFuse while cutting the
computation by half. With a similar number of FLOPs to AdaFuse, we achieve a state-of-
the-art 52.7% top-1 accuracy on Something-Something-V2 with ResNet18 as a backbone.

Alternative networks dedicated to video have been proposed, such as MoViNets [14], but
they lack a key component in videos, temporal aggregation of information from different
timestamps.

An early approach for temporal aggregation was Temporal 3D ConvNets (also known
as video convolutional networks) [3]. These networks seek to capture both short-term and
long-term dynamics, but they require a lot of resources to train and evaluate. To address
this issue, lightweight and memory-friendly architectures were proposed [4, 15], but their
accuracy-computation trade-off was insufficient.

An alternative to changing the architecture is using the original architecture but pruning
less significant channels [21]. In earlier works, pruning is static, i.e., weights are pruned
offline during training and then the network remains sparse during inference. In later works,
dynamic pruning is proposed [6], which preserves the entire structure of the network during
training, but skips certain channels during inference. This methods added a simple policy
network that identifies filters that contribute less to the final prediction.

Inspired by channel-wise dynamic pruning on images, AdaFuse [19] proposed an exten-
sion for video. A learned policy network dynamically combines information from current
and previous frames’ feature maps, specifying whether channels are to be computed, reused
from past feature maps or skipped. This method aims to identify and avoid temporal redun-
dancies in addition to utilizing temporal aggregation for improved accuracy.

In our work, we use policy networks not only to identify redundancy in the time domain
but also sparsity in the spatial domain, ignoring unimportant regions. By using more in-
formation and a unique loss function, the network also allows better temporal aggregation.
The policy network and its inputs have been redesigned with two major changes; the first is
addressing both the temporal and the spatial domains to reduce computations. The second is
to make decisions based on more valuable information.

Citation
Citation
{Kondratyuk, Yuan, Li, Zhang, Tan, Brown, and Gong} 2021

Citation
Citation
{{Diba}, {Fayyaz}, {Sharma}, {Karami}, {Mahdi Arzani}, {Yousefzadeh}, and {Van Gool}} 2017

Citation
Citation
{Fan, Chen, Kuehne, Pistoia, and Cox} 2019

Citation
Citation
{Kopuklu, Kose, Gunduz, and Rigoll} 2019

Citation
Citation
{Molchanov, Tyree, Karras, Aila, and Kautz} 2016{}

Citation
Citation
{Gao, Zhao, T1L ukasz Dudziak, Mullins, and zhong Xu} 2019

Citation
Citation
{Meng, Panda, Lin, Sattigeri, Karlinsky, Saenko, Oliva, and Feris} 2021

D-STEP: DYNAMIC SPATIO-TEMPORAL PRUNING 3

To demonstrate the effectiveness of our approach, we run extensive experiments on com-
mon datasets, including Something-Something-V2, Kinetics and Jester. As shown in Fig-
ure 1, our method is able to reduce the number of FLOPs by 50% without any accuracy
degradation compared to several leading algorithms. In addition, it is able to achieve the
highest accuracy level by a wide margin without increasing the number of FLOPs. Our re-
sults demonstrate the effectiveness of our method focusing on relevant regions and filters and
reusing past information. In summary, the main contributions of our work are as follows:

• A novel approach to dynamically prune tiles and filters, which identifies both spatial
and channel sparsities as well as temporal redundancy, minimizing computations.

• The approach is generic for all spatio-temporal tasks, making it suitable for a wide
range of video-specific architectures.

• A new state-of-the-art trade-off between accuracy and latency for action recognition
tasks. Compared to the current leading adaptive methods, our method achieved +2%
accuracy with similar FLOPs, and preserved accuracy while reducing half the FLOPs.

2 Related Work
Standard 2D CNNs were proven effective in solving a variety of video-related tasks such as
action recognition. An early design [24] used a two-stream CNN to analyze both appearance
(RGB) and motion (optical flow) inputs, but lacked the ability to infer complex temporal
relationships. To alleviate it, 2D convolutions were extended to 3D convolutions [3, 27]
operating on images and tensors concatenated from different timestamps. Following works
used 3D convolutions more effectively [2] and demonstrated their advantages over 2D alter-
natives [8]. Recently, transformers [26, 35] have demonstrated impressive visual accuracy,
though at a massive computational cost.

The high resource consumption of 3D convolutions and transformers has led to several
studies offering alternatives for temporal modeling using 2D convolutions, and a number of
enhancements and redesigned architectures have been proposed. Temporal Segment Net-
works (TSN) [30] derived averaged features from stride-sampled frames. Temporal Relation
Network (TRN) [36] was designed to learn and reason about temporal dependencies between
video frames at multiple time scales. RNN-based components such as LSTMs were inte-
grated into video networks [28]. Temporal Shift Module (TSM) [17] performed a static 3D
operation by using a preset fixed indentation for mixing channels from different timestamps.

Although these works have been successful, their efficiency is limited. In order to obtain
a lightweight model, many methods focused on the architecture and the number of parame-
ters. Pruning weights and channels [20], quantization [34], Neural Architecture Search [39],
and Knowledge Distillation [10] are all successful model compression techniques. However,
they are all static methods, i.e., the final model and the inference do not depend on the input.
Dynamic methods, like ours, can be combined with or applied on top of the static methods.
For images, Dynamic Channel Pruning [5] turns off some of the channels based on the input,
while Dynamic Dual Gating [16] considers both channel pruning and spatial masking.

For Videos, FrameExit [7] propose a conditional early exiting framework, which auto-
matically learns to process fewer frames for simpler videos and more frames for complex
ones. AdaFocus [31, 32] maintains the main portion of the image while ignoring the rest,
VA-RED2 [22] suggests a redundancy reduction framework and performs pruning on the

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{{Diba}, {Fayyaz}, {Sharma}, {Karami}, {Mahdi Arzani}, {Yousefzadeh}, and {Van Gool}} 2017

Citation
Citation
{Tran, Bourdev, Fergus, Torresani, and Paluri} 2015

Citation
Citation
{Carreira and Zisserman} 2017

Citation
Citation
{Hara, Kataoka, and Satoh} 2018

Citation
Citation
{Tong, Song, Wang, and Wang} 2022

Citation
Citation
{Xu, Xiong, Chen, Li, Xia, Tu, and Soatto} 2021

Citation
Citation
{Wang, Xiong, Wang, Qiao, Lin, Tang, and Gool} 2016

Citation
Citation
{Zhou, Andonian, Oliva, and Torralba} 2018

Citation
Citation
{Ullah, Ahmad, Muhammad, Sajjad, and Baik} 2017

Citation
Citation
{Lin, Gan, and Han} 2019

Citation
Citation
{Molchanov, Tyree, Karras, Aila, and Kautz} 2016{}

Citation
Citation
{Wu, Leng, Wang, Hu, and Cheng} 2016

Citation
Citation
{Zoph and Le} 2016

Citation
Citation
{Hinton, Vinyals, Dean, etprotect unhbox voidb@x protect penalty @M {}al.} 2015

Citation
Citation
{Gao, Zhao, Dudziak, Mullins, and Xu} 2018

Citation
Citation
{Li, Li, He, and Cheng} 2021

Citation
Citation
{Ghodrati, Bejnordi, and Habibian} 2021

Citation
Citation
{Wang, Chen, Jiang, Song, Han, and Huang} 2021{}

Citation
Citation
{Wang, Yue, Lin, Jiang, Lai, Kulikov, Orlov, Shi, and Huang} 2021{}

Citation
Citation
{{Pan}, {Panda}, {Fosco}, {Lin}, {Andonian}, {Meng}, {Saenko}, {Oliva}, and {Feris}} 2021

4 D-STEP: DYNAMIC SPATIO-TEMPORAL PRUNING

Video Frame

Layer

Video Frame

Layer

2 D Conv

Temporal Policy Net

Spatial Mask

0

0

0
0

1
1

1 1

1 1
1

1
1
1
1

1

1
1
1

1
1

1

1

1
1
11

1
00

0 0

Temporal Mask

Spatial Policy Net
Compute
Skip
Reuse
Pointwise multimply

Temporal Fusion

Ad ap tive Avg-Pool

Glob al Avg-Pool

Glob al Avg-Pool

Spatial Policy Net

Ad ap tive Avg-Pool

2 D Conv

Figure 2: An overview of the architecture. We prune spatial and temporal redundancy and
aggregate information during frames while paying attention to spatial maps S. Each feature
map at layer l is first filtered through S. Then, at time t + 1, the 2D Conv layer processes
compute channels (blue) in feature map Vt+1,l , and fuses the reuse channels (red) from the
history feature map Vt,l+1. Best viewed in color.

temporal and channel dimensions, and AdaFuse [19] analyzes pairs of consecutive frames
and adaptively identifies channels that can be skipped. Additionally, it suggests a fusion
technique that can copy computed channels from the previous timestamp rather than recal-
culating unchanged information, hence saving computations. Our approach is based on the
latter methods leading to a dynamic model whose inference depends on the input images
and their evolution through time. Our model distinguishes itself from the recent by being
the first to combine dynamic inference in both the spatial, temporal and channel domains.
Furthermore, the same mechanism can be used for temporal aggregation as well, making the
method accurate and efficient at the same time.

3 Method
Our method relies on simultaneously addressing spatial and channel sparsity, temporal re-
dundancy and feature aggregation. We propose Dynamic Spatio-TEmporal Pruning, D-
STEP, an efficient video processing method that dynamically identifies regions that con-
tribute less to the final prediction and channels that can be reused from previous frames,
saving unnecessary compute. The reuse of past channels also aids accuracy by serving as a
feature aggregation mechanism.

3.1 Temporal and Spatial Dynamic Pruning
Our architecture employ two stages of adaptive policies – one regarding spatial aspects and
another concerning temporal aspects – which we combine to form the core of the method.

Citation
Citation
{Meng, Panda, Lin, Sattigeri, Karlinsky, Saenko, Oliva, and Feris} 2021

D-STEP: DYNAMIC SPATIO-TEMPORAL PRUNING 5

As illustrated in Figure 2, per convolution layer or residual block, we have introduced two
consecutive lightweight sub-networks: the first estimates a spatial mask and the second op-
timizes a temporal policy and identifies the most important filters. Spatial masks are applied
at the spatial dimension, which means they look for unimportant tiles and avoid computing
all corresponding filters, nullifying all channels. In contrast, and following [19], a temporal
policy network predicts one of the following values for each channel – compute, skip and
reuse. Reusing feature maps from previous timestamps achieves at once both a reduction
in computations and temporal feature aggregation. Whenever the policy network dictates to
skip a channel, the convolution filter is avoided reducing compute further. Notice that in this
case a skipped channel can also be avoided when used as an input to the next layer reducing
compute even more. To create the next layer’s feature map, the network applies standard 2D
convolutions on the rest of the channels, and the calculated features are merged with reused
channels.

To formulate the whole layer process, consider a single 2D convolution. For layer l
in frame t, the output of a standard convolution is: Vt,l+1 = ϕ(W ∗Vt,l + b), where Vt,l ∈
Rcl×hl×wl denotes the input feature map in layer l at timestamp tl with cl channels and spatial
dimension hl ×wl , and Vt,l+1 ∈Rcl+1×hl+1×wl+1 is the output feature map, i.e. the feature map
in layer l +1 at the same timestamp. W ∈ Rcl+1×k×k×cl denotes the convolution filters with
kernel size k× k, b ∈ Rcl+1 is the bias, and ϕ is the activation function.

In between two successive layers, there are two stages. First, there is a spatial binary
mask S that identifies spatial sparsity. S could be in the spatial dimensions of the outputs
channel, i.e. Rhl+1×wl+1 , meaning that the mask makes a decision per pixel. Alternatively, the
input feature maps can be divided into p× p tiles in the spatial dimension, where the mask
determines which tiles should be skipped. In this case, S is a matrix with ⌈ hl+1

p ⌉× ⌈wl+1
p ⌉

binary values. In order to evaluate the mask, we use Average Pooling operation to aggregate
local information from input feature maps. After that, we use a standard 3× 3 convolution
to combine channels together and produce a 2D spatial attention map. During inference, we
binarize the value by a simple round function. However, due to the non-differentiable nature
of the binarization operation we rely on a modification of the Gubmel-SoftMax method [13],
as used in [16], and described below.

In the second stage, a temporal channel-wise policy network is used, which yields a
categorical vector T ∈ {skip,reuse,compute}cl+1 . in order to account for the masked spatial
information within the temporal policy, we first mask out all channels using the spatial mask
S (up-sampling the mask if the dimensions are inconsistent). Such masking allows the
temporal policy network to attend only relevant information. The result of this multiplication
is denoted by V̂t,l . The temporal policy network processes two masked feature maps of two
consecutive frames – V̂t,l and V̂t+1,l . Based on their combined information, the adaptive
policy determines whether each channel is uninformative (skip), needs to be copied from last
frame (reuse), or needs to be calculated (compute). In particular, every channel is spatially
reduced via Global Average Pooling operation, followed by a simple two-level MLP policy
network that gets pairs of time-consecutive channel vectors and predicts whether to skip,
reuse, or compute the channels. As for the channels that should be computed according to
the policy network, for the informative tiles, the 2D convolution is computed, to get Ṽt+1,l+1.
Finally, we apply T to merge the reused data from the previous frame with the computed
data from the current frame, i.e:

V i, j,c
t+1,l+1 = S i, j,c

t,l × [(Ṽ i, j,c
t+1,l+1|T

c
t,l = compute)+(V i, j,c

t,l+1|T
c

t,l = reuse)] (1)

Citation
Citation
{Meng, Panda, Lin, Sattigeri, Karlinsky, Saenko, Oliva, and Feris} 2021

Citation
Citation
{Jang, Gu, and Poole} 2016

Citation
Citation
{Li, Li, He, and Cheng} 2021

6 D-STEP: DYNAMIC SPATIO-TEMPORAL PRUNING

Notice the formula is written in pixel-wise notation for simplicity, while S is defined over
spatial image patches, making the network HW acceleration efficient.

In our architecture we use a unique policy network for each ResNet block. While a
shared network could have been used across several layers, this is not optimal as each block
analyzes a different level of information. In addition, we only use a single policy network
between the first and second convolution layers of a ResNet block. As mentioned in [1],
this setting allows each ResNet block to use the full input and update the full output, and
experimentally it performs better than applying multiple gates in a block.

The computation overhead of the policy networks is negligible. The total FLOPs of
the temporal channel-wise policy networks is 0.14G for ResNet18 (< 1% of baseline) and
0.62G for ResNet50 (1.9%). The spatial policy networks use only a single 3 × 3 convolution
to generate spatial attention maps from the pooled input features. The total FLOPs for these
modules is 0.07M (< 0.01% of baseline) for ResNet18 and 0.045G (0.14%) for ResNet50.

3.2 Training Process
Compute measurement. Although D-STEP can be used to dynamically sparse any 2D
convolution operation, regardless of the network architecture, as suggested in [19], we apply
it here only to the first of the two convolutions composing each ResNet [9] residual block.
The average network FLOPs count, F , is the average over all frames of the sum of FLOPs
in all dynamic residual blocks. Per block, let us denote Cin and Cout the block’s number of
input and output channels, C the number of channels between the two convolutions, and k0,
k1 the kernels’ sizes, then the amount of convolutional FLOPs per Residual block could be
formulated as:

Cink2
0

C

∑
c=1

∑
i, j
Si, j(T c

t = compute||T c
t+1 = reuse)+Coutk2

1

C

∑
c=1

∑
i, j
Si, j(T c

t ̸= skip) (2)

Loss function. As we aim to both improve accuracy by aggregating spatio-temporal
information and reduce computations by sparsing the features map, we use a loss function
that combines these two objectives. The accuracy term, Ltask, is a Cross-Entropy Loss in our
case as commonly used for classification, but can be adapted for other tasks.

To reduce computations we propose an effective and easy to control regularization term.
Assume a static model requires FS FLOPs, and we want to reduce it to a specific target of
FD FLOPs. Let D =FD/FS, then using the loss term Lspar = (F/FS −D)2 encourages
the network to reduce computations but not below the target FLOPs count, FD. The even
spread of our results over the FLOPs axis in Figure 1 demonstrates the ease of controlling the
network compute budget. In other pruning methods, when the accuracy-compute trade-off
is guided by weighting of the loss terms, it is much harder to guide the network towards a
specific compute target.

As mentioned in earlier works [29], to avoid sub-optimal convergence of all the gates
to 0s or 1s, the spatial sparsity has to be properly initialized. We adopt a recent approach
[16], initially setting tight bounds on the sparsity level of the spatial mask, and relaxing those
bounds during training using a dedicated loss term, Lbound .

In contrast to other works [16, 19, 31], we warm-up the network for K epochs using
only the accuracy loss Ltask and bound loss Lbound and then activate the full combined loss
to reduce computations, smoothly. Overall, the full training loss is formulated as:

L=Ltask +λ (e)×Lspar + γ ×Lbound (3)

Citation
Citation
{Bejnordi, Blankevoort, and Welling} 2019

Citation
Citation
{Meng, Panda, Lin, Sattigeri, Karlinsky, Saenko, Oliva, and Feris} 2021

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Verelst and Tuytelaars} 2020

Citation
Citation
{Li, Li, He, and Cheng} 2021

Citation
Citation
{Li, Li, He, and Cheng} 2021

Citation
Citation
{Meng, Panda, Lin, Sattigeri, Karlinsky, Saenko, Oliva, and Feris} 2021

Citation
Citation
{Wang, Chen, Jiang, Song, Han, and Huang} 2021{}

D-STEP: DYNAMIC SPATIO-TEMPORAL PRUNING 7

With λ (e) set to zero for K epochs and gradually increased during training λ (e) = α ×eβ×e.
Training non-differentiable operators. The sparsity mechanism consists of two com-

ponents, temporal and spatial. The temporal component should provide during inference a
ternary map, T ∈ {reuse,compute,skip}Cl+1 . During training the policy network propagates
real numbers, and its output, T̂ ∈ R3×Cl+1 , calls for an argmax sampling. Since argmax is
not differentiable, it cannot be optimized with backpropagation-based methods. In order to
make this process differentiable, it is common to use score function estimators (e.g., RE-
INFORCE [33]). Nevertheless, it does not fit our scenario due to the high dimension of
the discrete variable, which causes the score function estimator to exhibit a high variance,
leading to slow convergence [13] [18]. As an alternative followed [18], we use the Gumbel
SoftMax reparameterization trick [13], which relaxes the discrete distribution into a continu-
ous Gumbel distribution to approximate a differentiable version of the argmax operation. As
a result, during inference and in the training forward pass we are able to sample the decision
policy from a discrete distribution, while in the backward pass, we approximate the gradient
of the discrete samples by computing it over the Gumbel SoftMax relaxation.

In the spatial case we would like to binarize the continuous policy network output, Ŝ ∈
R⌈ hl+1

p ⌉×⌈wl+1
p ⌉, into a spatial mask, S ∈ {0,1}⌈

hl+1
p ⌉×⌈wl+1

p ⌉. Argmax is not suitable here as it
forces the output vector sum to 1, hence high values in one region force down values in other
region, as opposed to our desire for independent decisions about each region’s contribution
to the final network outcome. Inspired by [16] we use a modified version of the Gumbel
SoftMax which applies sigmoid over the relaxed continuous distribution rather than softmax,
making a differentiable approximation for the binary map. As for the temporal case, we use
the binary map during inference and forward pass and the differential approximation during
backpropagation.

4 Results

In this section we demonstrate our method’s performance. First, we demonstrate that our ap-
proach can significantly improve the accuracy vs. compute trade-off, surpassing other base-
lines by a wide margin on the Something-Something-V2 dataset. Then, across all datasets,
our method consistently performs better than the comparable adaptive models. We further
propose insights into the impact of each element in our architecture and show that combining
spatial and temporal policies is highly effective.

We evaluate our method on common datasets including Something-Something-V2, Jester
and Mini-Kinetics (a subset of the full Kinetics dataset). There are 174 human action labels
in Something, 27 hand gesture classes in Jester, and 200 action classes in Mini-Kinetics. The
datasets are already split into training and validation, containing 194k/25k, 119k/15k, and
121k/10k videos, respectively.

Following previous training procedures [17] allowed us to make a fair comparison: We
uniformly sample N f = 8 frames from each video, while each frame has an input dimension
of 224×224. Standard augmentations, such as random scaling and cropping, are used during
training and center cropping is used during inference. We use ImageNet pretrained weights
in all our networks, and set the hyperparameters as follows: 50 epochs with an initial learning
rate of 0.001, decay x0.1 after 20 and 40 epochs, and batch size 16.

Citation
Citation
{Williams} 1992

Citation
Citation
{Jang, Gu, and Poole} 2016

Citation
Citation
{Meng, Lin, Panda, Sattigeri, Karlinsky, Oliva, Saenko, and Feris} 2020

Citation
Citation
{Meng, Lin, Panda, Sattigeri, Karlinsky, Oliva, Saenko, and Feris} 2020

Citation
Citation
{Jang, Gu, and Poole} 2016

Citation
Citation
{Li, Li, He, and Cheng} 2021

Citation
Citation
{Lin, Gan, and Han} 2019

8 D-STEP: DYNAMIC SPATIO-TEMPORAL PRUNING

4.1 Comparisons with State-Of-The-Art Efficient Video Recognition
Methods

First, we compare our method with several SOTA efficient video action recognition base-
lines: TSN [30], ECO [38], LSTM [28], TSM [17] and AdaFuse [19]. Our comparison
was done on the Something-Something-V2 dataset, with two backbones: ResNet18 and
ResNet50. As shown in Table 1, compared to static methods such as LSTM or TSM, our
approach can significantly save computations while maintaining accuracy by using an adap-
tive policy. In addition, even compared with AdaFuse’s dynamic model, our method gives a
better compute vs. efficiency trade-off, largely due to the utilization of spatial sparsity.

Table 1: Action recognition results on Something-Something-V2 dataset. Compared to cur-
rent baselines, our method provides several working points using different FLOPs targets
(Dhigh = 0.8,Dmedium = 0.6,Dlow = 0.4) with the highest accuracy using the same flops and
×2−3 less computation without sacrificing accuracy.

ResNet18 ResNet50
Model #Params FLOPs Top 1 #Params FLOPs Top 1

TSN 11.2M 14.6G 27.3 24.3M 33.2G 27.8
EcoLite 47.5M 32.0G 46.1 – – –
LSTM 11.7M 14.7G 28.4 – – –
TSM 10.4M 14.6G 52.6 24.3M 33.2G 59.1

AdaFuse + TSM 15.6M 11.0 50.9 37.8M 22.4G 57.3
AdaFuse + TSN 15.6M 11.1 49.6 37.8M 22.4G 56.2

D-STEP Dh 15.6M 12.2G 52.7 37.8M 21.4G 57.4
D-STEP Dm 15.6M 8.1G 51.4 37.8M 16.2G 56.2
D-STEP Dl 15.6M 6.14G 51.0 37.8M 11.6G 53.7

Second, We compare our approach to leading adaptive inference methods, such as AR-
Net, which adapts frame resolution, and AdaFuse, which applies a temporal and channel pol-
icy. Over a number of datasets, as shown in Table 2, we achieve a better accuracy-efficiency
trade-off. In particular, on both Something-Something-V2 and Jester, we are able to reduce
computations by ∼ 50% with comparable or even higher accuracy with the ResNet18 based
model. The fact that each dataset has unique characteristics illustrates that our method is
robust and suited to a variety of video scenes. When evaluating on the Mini-Kinetics dataset,
we faced the reproducibility issues discussed in [37]. For fair comparison, we report here
the competitor results obtained using code provided by the authors on our video sequences.
For consistency, and due to differences in the training batch size, results on Something-V2
and Jester datasets were also re-produced with the original AdaFuse code.

4.2 Ablation study on Dynamic Inference Methods

Table 3 provides deeper understanding of the contribution of different architectural compo-
nents. The static model fails in terms accuracy due to lack of temporal aggregation. Static
temporal shifts (TSM) are beneficial even on top of dynamic temporal shifts (reuse). Ad-
dressing spatial sparsity is very significant. It reduces computation by 16% while increasing
accuracy by 0.8% or 1.4% when added to dynamic channel pruning and dynamic or static
(TSM) temporal shifts, respectively.

Citation
Citation
{Wang, Xiong, Wang, Qiao, Lin, Tang, and Gool} 2016

Citation
Citation
{Zolfaghari, Singh, and Brox} 2018

Citation
Citation
{Ullah, Ahmad, Muhammad, Sajjad, and Baik} 2017

Citation
Citation
{Lin, Gan, and Han} 2019

Citation
Citation
{Meng, Panda, Lin, Sattigeri, Karlinsky, Saenko, Oliva, and Feris} 2021

Citation
Citation
{Zhu, Li, Liu, Zolfaghari, Xiong, Wu, Zhang, Tighe, Manmatha, and Li} 2020

D-STEP: DYNAMIC SPATIO-TEMPORAL PRUNING 9

Table 2: Comparison with adaptive video recognition models using ResNet18/ResNet50
backbones. With a significant reduction in FLOPs, our method significantly outperforms
others by a substantial margin in accuracy.

Method Params Something-V2 Jester Mini-Kinetics
FLOPs Top 1 FLOPs Top 1 FLOPs Top 1

R
es

N
et

18 AdaFuse + TSN 15.6M 11.1G 50.5 7.6G 93.7 11.7G 64.7
D-STEP Dh 15.6M 12.2G 52.7 7.92G 95.42 12.0G 65.7
D-STEP Dm 15.6M 8.1G 51.42 6.43G 95.3 10.9G 65.3
D-STEP Dl 15.6M 6.14G 50.99 3.59G 94.56 8.0G 64.1

R
es

N
et

50

AR-Net 63.0M 41.4G 18.9 21.2G 87.8 – –
AdaFuse + TSN 37.8M 18.1G 56.8 16.1G 94.7 23.8G 68.3

D-STEP Dh 37.8M 21.4G 57.4 16.1G 95.7 21.7G 67.3
D-STEP Dm 37.8M 16.2G 56.2 11.84G 95.54 19.7G 67.1
D-STEP Dl 37.8M 11.6G 53.7 9.84G 95.16 12.4G 65.4

Table 3: Ablation study of dynamic inference components using ResNet18 on Something-V2
dataset. DCP - Dynamic Channel Pruning. TS - Temporal Shift. SS - Spatial Sparsity.

Model #Params FLOPs Top 1 Top5

Baseline – Static Model [TSN] 11.2M 14.6G 27.3 38.0
Static TS + DCP 15.6M 10.78G 51.96 80.12
Dynamic TS + DCP [AdaFuse] 15.6M 11.1G 50.5 67.8
Dynamic TS + DCP + SS 15.6M 9.32G 51.29 79.15
Static and Dynamic TS + DCP 15.6M 11.02G 50.92 78.9
Static and Dynamic TS + DCP + SS 15.6M 9.22G 52.34 80.48

In Figure 3 we show qualitative results of the efficiency achieved by the spatial policy
network. A random video was sampled from the Something-V2 dataset and annotated using
the computed spatial masks. In order to demonstrate the induced sparsity, we calculate for
each frame the averaged Gumbel Sigmoid outputs across all network layers. As can be seen
in the figure, the policy network focuses on the most indicative regions, in this case the hand
connecting the USB cable to the computer.

Figure 3: Spatial gating visualization: The top row shows a random clip from Something-
V2, while the bottom row shows the averaged Gumbel Sigmoid outputs across all layers of
the network. Regions marked in red correspond to areas with high computation while blue
regions were mostly skipped.

10 D-STEP: DYNAMIC SPATIO-TEMPORAL PRUNING

4.3 Loss function

Figure 4 demonstrates the benefit of our sparsity loss term. In green, constant coefficient
multiplied by the FLOPs count, as in [19]. In red, our Lspar multiplied by a constant coeffi-
cient, similar to [16]. In yellow, Lspar multiplied by λ (e) increasing with epochs, and blue,
with the addition of 10 warm-up epochs. Lspar is favorable to FLOPs count loss, variable
sparsing coefficient improves further, and adding warm-up produces the highest accuracy
with the lowest FLOPs by a wide margin (12%).

0 10 20 30 40 50
Epochs

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

× #GFLOPs
× (

S
)2

(e) × (
S

)2

(e) × (
S

)2 + WU

6.0

6.5

7.0

7.5

GF
LO

Ps
Figure 4: Sparsity loss comparison. A smoothly increasing coefficient with warm-up shows
the best accuracy with a notable FLOPs reduction.

5 Conclusions
This work introduces a novel method for adaptive pruning that simultaneously addresses
spatial sparsity, channel sparsity and temporal redundancy. In addition, the temporal com-
ponent not only saves computation, but also allows effective feature aggregation. As a result
of our suggested design, we were able to achieve the same accuracy as recent works with
much fewer computations, and surpass them by a significant margin using the same num-
ber of FLOPs. Most video-specific architectures can incorporate our adaptive policies, and
improve their results using a model that gains a better understanding of the spatio-temporal
nature of video scenes.

References
[1] Babak Ehteshami Bejnordi, Tijmen Blankevoort, and Max Welling. Batch-shaping for

learning conditional channel gated networks. arXiv preprint arXiv:1907.06627, 2019.

Citation
Citation
{Meng, Panda, Lin, Sattigeri, Karlinsky, Saenko, Oliva, and Feris} 2021

Citation
Citation
{Li, Li, He, and Cheng} 2021

D-STEP: DYNAMIC SPATIO-TEMPORAL PRUNING 11

[2] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and
the kinetics dataset. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

[3] A. Diba, M. Fayyaz, V. Sharma, A. H. Karami, M. Mahdi Arzani, R. Yousefzadeh, and
L. Van Gool. Temporal 3D ConvNets: New Architecture and Transfer Learning for
Video Classification. ArXiv e-prints, November 2017.

[4] Quanfu Fan, Chun-Fu (Ricarhd) Chen, Hilde Kuehne, Marco Pistoia, and David Cox.
More Is Less: Learning Efficient Video Representations by Temporal Aggregation
Modules. In Advances in Neural Information Processing Systems 33. 2019.

[5] Xitong Gao, Yiren Zhao, Łukasz Dudziak, Robert Mullins, and Cheng-zhong Xu.
Dynamic channel pruning: Feature boosting and suppression. arXiv preprint
arXiv:1810.05331, 2018.

[6] Xitong Gao, Yiren Zhao, Łukasz Dudziak, Robert Mullins, and Cheng zhong Xu. Dy-
namic channel pruning: Feature boosting and suppression. In International Conference
on Learning Representations, 2019. URL https://openreview.net/forum?
id=BJxh2j0qYm.

[7] Amir Ghodrati, Babak Ehteshami Bejnordi, and Amirhossein Habibian. Frameexit:
Conditional early exiting for efficient video recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2021.

[8] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns re-
trace the history of 2d cnns and imagenet? In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 6546–6555, 2018.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[10] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2(7), 2015.

[11] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing
Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for
mobilenetv3. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 1314–1324, 2019.

[12] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[13] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax. arXiv preprint arXiv:1611.01144, 2016.

[14] Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang, Mingxing Tan, Matthew
Brown, and Boqing Gong. Movinets: Mobile video networks for efficient video recog-
nition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16020–16030, 2021.

https://openreview.net/forum?id=BJxh2j0qYm
https://openreview.net/forum?id=BJxh2j0qYm

12 D-STEP: DYNAMIC SPATIO-TEMPORAL PRUNING

[15] Okan Kopuklu, Neslihan Kose, Ahmet Gunduz, and Gerhard Rigoll. Resource effi-
cient 3d convolutional neural networks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, pages 0–0, 2019.

[16] Fanrong Li, Gang Li, Xiangyu He, and Jian Cheng. Dynamic dual gating neural net-
works. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 5330–5339, 2021.

[17] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift module for efficient video un-
derstanding. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 7083–7093, 2019.

[18] Yue Meng, Chung-Ching Lin, Rameswar Panda, Prasanna Sattigeri, Leonid Karlinsky,
Aude Oliva, Kate Saenko, and Rogerio Feris. Ar-net: Adaptive frame resolution for
efficient action recognition. In European Conference on Computer Vision, pages 86–
104. Springer, 2020.

[19] Yue Meng, Rameswar Panda, Chung-Ching Lin, Prasanna Sattigeri, Leonid Karlinsky,
Kate Saenko, Aude Oliva, and Rogerio Feris. Adafuse: Adaptive temporal fusion
network for efficient action recognition. arXiv preprint arXiv:2102.05775, 2021.

[20] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Prun-
ing convolutional neural networks for resource efficient inference. arXiv preprint
arXiv:1611.06440, 2016.

[21] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Prun-
ing convolutional neural networks for resource efficient inference. arXiv preprint
arXiv:1611.06440, 2016.

[22] B. Pan, R. Panda, C. Fosco, C. Lin, A. Andonian, Y. Meng, K. Saenko, A. Oliva, and
R. Feris. Va-red2: Video adaptive redundancy reduction. 2021.

[23] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4510–4520, 2018.

[24] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for ac-
tion recognition in videos. Advances in neural information processing systems, 27,
2014.

[25] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In International conference on machine learning, pages 6105–6114.
PMLR, 2019.

[26] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoen-
coders are data-efficient learners for self-supervised video pre-training. arXiv preprint
arXiv:2203.12602, 2022.

[27] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
Learning spatiotemporal features with 3d convolutional networks. In Proceedings of
the IEEE International Conference on Computer Vision (ICCV), December 2015.

D-STEP: DYNAMIC SPATIO-TEMPORAL PRUNING 13

[28] Amin Ullah, Jamil Ahmad, Khan Muhammad, Muhammad Sajjad, and Sung Wook
Baik. Action recognition in video sequences using deep bi-directional lstm with cnn
features. IEEE access, 6:1155–1166, 2017.

[29] Thomas Verelst and Tinne Tuytelaars. Dynamic convolutions: Exploiting spatial spar-
sity for faster inference. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2320–2329, 2020.

[30] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and
Luc Van Gool. Temporal segment networks: Towards good practices for deep action
recognition. In European conference on computer vision, pages 20–36. Springer, 2016.

[31] Yulin Wang, Zhaoxi Chen, Haojun Jiang, Shiji Song, Yizeng Han, and Gao Huang.
Adaptive focus for efficient video recognition. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 16249–16258, 2021.

[32] Yulin Wang, Yang Yue, Yuanze Lin, Haojun Jiang, Zihang Lai, Victor Kulikov, Nikita
Orlov, Humphrey Shi, and Gao Huang. Adafocus v2: End-to-end training of spatial
dynamic networks for video recognition. arXiv preprint arXiv:2112.14238, 2021.

[33] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3):229–256, 1992.

[34] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized con-
volutional neural networks for mobile devices. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4820–4828, 2016.

[35] Mingze Xu, Yuanjun Xiong, Hao Chen, Xinyu Li, Wei Xia, Zhuowen Tu, and Stefano
Soatto. Long short-term transformer for online action detection. Advances in Neural
Information Processing Systems, 34:1086–1099, 2021.

[36] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Torralba. Temporal relational
reasoning in videos. In Proceedings of the European conference on computer vision
(ECCV), pages 803–818, 2018.

[37] Yi Zhu, Xinyu Li, Chunhui Liu, Mohammadreza Zolfaghari, Yuanjun Xiong, Chongruo
Wu, Zhi Zhang, Joseph Tighe, R Manmatha, and Mu Li. A comprehensive study of
deep video action recognition. arXiv preprint arXiv:2012.06567, 2020.

[38] Mohammadreza Zolfaghari, Kamaljeet Singh, and Thomas Brox. Eco: Efficient con-
volutional network for online video understanding. In Proceedings of the European
conference on computer vision (ECCV), pages 695–712, 2018.

[39] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578, 2016.

