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Experiments

Conclusion

• We proposed a hierarchical residual learning based vector quantized
variational Autoencoder (namely HR-VQVAE) for the image reconstruction and
generation tasks.

• HR-VQVAE maps the continuous latent representations to several layers of
discrete representations through hierarchical codebooks.

• The vector selected within bottom layer determines the codebook that is
activated in the top layer.

• Such a hierarchical searching procedure provides the advantage of local access
to codebook indexes, which dramatically reduces search time.

• A novel objective function is proposed to provide contrastive learning by
pushing each layer to extract information not learned by its preceding layers.

• The objective optimizes the output image from the combination of
representations obtained from all layers.

Fig. 2. VQVAE-2 Architecture [2].

Fig. 1. VQVAE Architecture [1].

• We proposed a novel multi-layer variational Autoencoder method for image modeling that we call
HR-VQVAE.

• HR-VQVAE learns hierarchical residual discrete representations in an iterative and hierarchical
fashion.

• The objective of HR-VQVAE is designed to encourage different layers to encode different aspects of
an image.

• Through experimental evidence, we show how HR-VQVAE can reconstruct images with a higher
level of details than state-of-the-art models with similar complexity.

• We also show that we can increase the size of the codebooks without incurring the codebook
collapse problem that is observed in methods such as VQVAE and VQVAE-2.

•

(1)

(2)

(3)

(4)

(5)

(6)

References

Fig.3. HR-VQVAE Architecture.

Fig. 4. Reconstructions obtained with HR-VQVAE models with different depths.

Fig. 5. The effect of model depth.
Fig. 6. Average MSE vs number of codewords.

Fig. 7. Reconstructions obtained with HR-VQVAE, VQVAE-2 and VQVAE.

Table 1. FID/MSE reconstruction results using HR-VQVAE, VQVAE-2 and VQVAE

Table 2: Time for reconstructing 10,000 samples using HR-VQVAE, VQVAE-2 and VQVAE.

Table 3: Generation results using HR-VQVAE, VQVAE-2 and VQVAE.
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Fig. 8. Random samples on FFHQ generated by VQVAE-2, VQ-GAN and HR-VQVAE, respectively.


