Hierarchical Residual Learning Based Vector Quantized Variational Autoencoder for Image Reconstruction and Generation

Mohammad Adiban^{1,2}, Kalin Stefanov², Marco Siniscalchi¹, Giampiero Salvi^{1,3}

- HR-VQVAE maps the continuous latent representations to several layers of ulletdiscrete representations through hierarchical codebooks.
- The vector selected within bottom layer determines the codebook that is \bullet activated in the top layer.
- Such a hierarchical searching procedure provides the advantage of local access lacksquareto codebook indexes, which dramatically reduces search time.

Objective functions

Quantize^{*i*}(
$$\boldsymbol{\xi}_{hw}^{i-1}$$
) = \mathbf{e}_{k}^{i} where $k = \arg\min_{j} \|\boldsymbol{\xi}_{hw}^{i-1} - \mathbf{e}_{j}^{i}\|_{2}$, (3)

$$\mathbf{e}_C = \sum_{i=1}^n \mathbf{e}^i,\tag{4}$$

KTH VETENSKAP

MONASH University

BMVC

$$\mathcal{L}(\mathbf{x}, \mathcal{D}(\mathbf{e}_C)) = \|\mathbf{x} - \mathcal{D}(\mathbf{e}_C)\|_2^2 + \|\mathbf{sg}[\boldsymbol{\xi}^0] - \mathbf{e}_C\|_2^2 + \beta_0 \|\mathbf{sg}[\mathbf{e}_C] - \boldsymbol{\xi}^0\|_2^2 + \sum_{i=1}^n \mathcal{L}(\boldsymbol{\xi}^{i-1}, \mathbf{e}^i), \quad (5)$$

$$\mathcal{L}(\boldsymbol{\xi}^{i-1}, \mathbf{e}^{\mathbf{i}}) = \|\mathbf{sg}[\boldsymbol{\xi}^{i-1}] - \mathbf{e}^{i}\|_{2}^{2} + \beta_{i}\|\mathbf{sg}[\mathbf{e}^{i}] - \boldsymbol{\xi}^{i-1}\|_{2}^{2}, \tag{6}$$

Experiments

- A novel objective function is proposed to provide contrastive learning by • pushing each layer to extract information not learned by its preceding layers.
- The objective optimizes the output image from the combination of \bullet representations obtained from all layers.

Background: VQVAE, VQVAE-2

Overview

Quantize
$$(\mathbf{z}_{hw}) = \mathbf{e}_k$$
 where $k = \arg\min_j ||\mathbf{z}_{hw} - \mathbf{e}_j||_2,$ (1)

$$\mathcal{L}(\mathbf{x}, \mathcal{D}(\mathbf{e})) = \|\mathbf{x} - \mathcal{D}(\mathbf{e})\|_2^2 + \|\mathbf{sg}[\mathbf{z}] - \mathbf{e}\|_2^2 + \beta \|\mathbf{sg}[\mathbf{e}] - \mathbf{z}\|_2^2.$$
(2)

Fig. 2. VQVAE-2 Architecture [2].

Proposed Method: HR-VQVAE

1110401	FFHQ	ImageNet	CIFAR10	MNIST
VQVAE [19]	2.86/0.00298	3.66/0.00055	21.65/0.00092	7.9/0.00041
VQVAE-2 [18]	1.92/0.00195	2.94/0.00039	18.03 /0.00068	6.7/0.00025
HR-VQVAE	1.26/0.00163	2.28/0.00027	18.11/ 0.00041	6.1/0.00011

Table 2: Time for reconstructing 10,000 samples using HR-VQVAE, VQVAE-2 and VQVAE.

Model	Seconds				
	FFHQ	Imagenet	CIFAR10	MNIST	
VQVAE [19]	5.0977652	4.6152677	2.7087896	0.062474	
VQVAE-2 [18]	9.3443758	8.8135872	4.4492340	0.090778	
HR-VQVAE	0.8398101	0.6714823	0.4667842	0.010830	

Fig. 8. Random samples on FFHQ generated by VQVAE-2, VQ-GAN and HR-VQVAE, respectively.

Table 3: Generation results using HR-VQVAE, VQVAE-2 and VQVAE.

Model	Generation evaluation (FID \downarrow)			
	FFHQ	ImageNet	CIFAR10	MNIST
VQVAE [19]	24.93	44.76	78.90	16.69
VQVAE-2 [18]	19.66	39.51	74.43	11.81
HR-VQVAE	17.45	35.29	71.38	11.75

Conclusion

- We proposed a novel multi-layer variational Autoencoder method for image modeling that we call HR-VQVAE.
- HR-VQVAE learns hierarchical residual discrete representations in an iterative and hierarchical fashion.
- The objective of HR-VQVAE is designed to encourage different layers to encode different aspects of an image.
- Through experimental evidence, we show how HR-VQVAE can reconstruct images with a higher level of details than state-of-the-art models with similar complexity.
- We also show that we can increase the size of the codebooks without incurring the codebook collapse problem that is observed in methods such as VQVAE and VQVAE-2.

References

[1] Aaron van den Oord, Oriol Vinyals, et al. Neural discrete representation learning. In Advances in Neural Information Processing Systems, pages 6306–6315, 2017.

[2] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2. In Advances in neural information processing systems, pages 14866–14876, 2019.