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Abstract

In this paper, our goal is a person-centric model capable of retrieving the image or
video corresponding to a personalized compound query from a large set of images or
videos. Specifically, given a query consisting of an image of a person’s face and a text
scene description or action description, we retrieve images or video-clips corresponding
to this compound query. We make three contributions: (1) we propose CLIP-PAD, a
model that is able to retrieve images/video given a personalized compound-query. We
achieve this by building on a pre-trained CLIP vision-text model that has compound,
but general, query capabilities, and provide a mechanism to personalize it to the target
person specified by their face; (2) we share a new Celebrities in Action (CiA) dataset of
movies with automatically generated annotations for identities, locations, and actions that
can be used for evaluation of the compound-retrieval task; (3) we evaluate our model’s
performance on two datasets: Celebrities in Places for compound queries of a celebrity
and a scene description; and our new CiA for compound queries of a celebrity and an
action description. We demonstrate the flexibility of the model with free-form queries
and compare to previous methods.

1 Introduction

Suppose that you want to find the video of your vacation where you ran in a red and white
striped shirt in front of the Parthenon in Athens amongst all videos on your phone. Or imag-
ine that you cannot remember the name of the movie where Ben Stiller runs on a boat. Or
maybe you don’t even know Ben Stiller’s name, but have seen him in another movie and
can find his picture. On its own, finding out if you (or Ben Stiller) are in the video or if the
video contains a boat or Parthenon (single-query) is a well-researched problem. Searching
with multiple (and potentially multi-modal) compounded queries in large databases, how-
ever, is still a challenging and under-researched proposition. In this paper, we aim to tackle
this problem and deliver a model that is capable of precise retrieval for compound queries
looking for specific people in specific places or performing a specific action.
Vision-language models such as CLIP [35] and ALIGN [14] have transformed the per-
formance of many visual-language tasks. These models use a dual encoder and are trained
on large-scale datasets [29, 38] using a contrastive loss. In particular, they can be used to
retrieve an image or video given a free-form text description. However, this freedom of us-
ing a sentence to describe the sought visual content is also a limitation. How can a query
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Figure 1: An outline of the CLIP-PAD architecture, when it is queried by a target face
image (in this case of Michael Richards) and a sentence. Gray modules (dark background)
are pre-trained and frozen, whilst blue ones (light background) are learned. The model
correctly retrieves a video clip that matches the text description (specified by the sentence)
personalized to Michael Richards (specified by his face).

also include specific visual content such as a particular person (specified by their face), or a
particular object instance (specified by an image of it)? If the model doesn’t have the notion
of identity, how can it find a conceptual difference between different instances (“Brad Pitt”
vs “George Clooney”)? In this work, we propose a simple addition to the foundation models
that would allow them to do just that.

The key idea is to provide a mechanism to adapt a face image (that specifies the identity)
to ‘act as’ a text token that describes the identity within the query, as illustrated in Fig. 1.
We show that making the model identity-aware works remarkably well compared to a zero-
shot model. It significantly improves the retrieval performance on the Celebrities-in-Places
(CiP) [45] compound-query retrieval dataset. Furthermore, we show that we can use our
personalised model even in video scenarios. To this end, we annotate a human action movie
dataset with person-specific labels, which we call Celebrities in Action (CiA), and evaluate
performance compared to existing retrieval methods.

This person adaptive model, which we refer to as CLIP-PAD(Person ADaptive), has
applications in real-world video-retrieval applications, such as searching a video archive
for historical celebrities performing actions or in particular places. For example, it would
enable a broadcaster such as the BBC or a stock company such as Shutterstock to carry
out a personalized compound query, using free-form text, to search the archive on their
visual content, without requiring any text annotation of the archive. The scheme is clearly
applicable also for seaching personal images and videos.

In section 3 we outline the CLIP-PAD model, in particular the simple adaptor mecha-
nism for the CLIP model that allow us to retrieve images (and video) given a personalized
compound-query. In section 4 we describe the CiA dataset, a new benchmark for video
compound retrieval, and how it is generated. Finally, in section 5 we demonstrate the high
performance of the model against baselines on both CiP and CiA under various different
retieval scenarios. In the supplementary material, we additionally show a real-world retrieval
example from various episodes of the Seinfield TV Show.
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2 Related work

Foundation video-text models. Ever since AlexNet [17], pre-trained models have been
used to boost performance or bootstrap models on downstream tasks [36]. Using video-to-
text correspondence to develop strong pre-trained models is not a novel phenomenon [10,
26, 27], however, recently the scale of training data became so large that a new generation of
pre-trained (sometimes also called foundation) models was developed with the capacity of
implicitly solving even the tasks they weren’t trained for explicitly (CLIP [35], ALIGN [14],
BLIP [20], FILIP [43], to name just a few). Following these advances, we use CLIP as a
backbone embedding for our model and use a trainable-prompting paradigm to achieve our
tasks.

Text-to-video retrieval. Video-text retrieval has long been a fruitful research direction, with
a plethora of datasets available [12, 16, 18, 37, 46]. Due to the processing costs, most
models were traditionally developed on top of feature “experts" [3, 6, 9, 21, 25, 26]. First,
the features are extracted from models that were pre-trained for a specific task (and often
combined), and then the retrieval model was trained. With the rise of large-scale models that
use video-to-text correspondence [7, 8, 10, 19, 26, 27], the focus switched to direct similarity
metrics between retrieval text queries and videos. Foundation models dominate the video-
text retrieval leader boards, even in the zero-shot setting [1, 2, 22, 32, 35, 41]. This task is
closely related to the tasks of text-to-video-localization and (corpus) moment retrieval [44],
for which various architectures have been proposed [40, 42].

Compound (person-specific) query retrieval. Text-to-video retrieval is a notably different
task to compound (person-specific) query retrieval as it requires much less specificity. Tra-
ditional text-to-video retrieval datasets are often depersonalized (e.g. in LSMDC, all names
are substituted by “someone" [37], so a query "Kramer enters the apartment”, and "George
enters the apartment" would be indistinguishable). In the case of compound retrieval, the fo-
cus is on specificity. Despite it being a common everyday task, very few datasets have been
released and we believe it is an under-explored task. We address this by presenting a new
dataset based on the existing Hollywood2 benchmark [24] and High-Five human interaction
dataset [33], annotated with identities to enable compound-queries and responses.

CLIP and its shortcomings. CLIP is a dual-encoder foundation model introduced by Rad-
ford et al. [35]. The premise is rather simple, given an image processed by a visual encoder
and corresponding text processed by a text encoder train the model contrastively (using sym-
metric contrastive loss), and train it on an unprecedented scale (over 400M labeled images).
Since its publication and release, CLIP models have been used in a myriad different ways
for a plethora of tasks, often unrelated to their original training task [23, 28, 35, 39, 41].
To harness emerging properties of these models, CLIP-based models are used in a zero-shot
manner [34], simply by modifying the prompt to match the desired output [28, 35]. If we
wanted to know if the image contains a bird or a dog, we’d simply feed an image and two
text prompts ("Image of a dog”, “Image of a bird”), and then find which text
prompt has higher similarity to the image. Other common ways of “adapting” clip are via
learning models on top of the visual embedding [23, 35, 39], or via learnable prompting [15].
Despite the size and the variety of the training dataset CLIP is trained on, there are some tasks
that it is inherently less suited to — e.g. tasks containing actions. This shortcoming is not sur-
prising as the model is trained on images alone, and as recent works have shown, adapting
it to the video domain does take additional ingenuity [1, 23, 34]. The most prevalent ap-
proaches are training specific prompts to feed into the model [15], augmenting the model
architecture to accept different embedding types [1], or training aggregation models on top
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of it [23]. Our approach roughly falls amongst “learnable prompting" approaches.

3 Personalising CLIP: CLIP-PAD

To personalise CLIP, we adopt a prompt-learning method in order to adapt the model for our
task. We wish to use a free-form text query but adapted to the specific target person. To
achieve this we fine-tune the CLIP text encoder to “recognise” the target person given a text
query and a prompt starting from a loose crop of the person’s face.

Architecture overview. The architecture is illustrated in figure 1. The target face image is
processed by a pre-trained face encoder, and passed through a Multi-Layer Perception (MLP)
to adapt the face encoding to the space of the word encodings. The entire compound query is
then encoded using the CLIP text encoder. So, for example, to find an image of Tom Cruise
running, the face image would be of Tom Cruise, and the text query would be “An image
of TOK running”, where TOK is the output of the MLP adaptor. Note, the only trainable
components of the architecture are the MLP adaptor, and in case of text-queries, the CLIP
Text encoder. All the other modules: ConvNet face encoder, and CLIP image encoder are
pre-trained and frozen. The details of each module are given in the implementation details.

Dataset retrieval. In order to perform a text-to-image retrieval, embeddings are generated
for every image in the dataset using the CLIP image encoder. The match for a given (com-
pound) query is then obtained by finding the image representation with the highest cosine
similarity to the CLIP embedding of the query text. Query text can be formed of text only
(“An image of Tom Cruise running”), text with a visual query (“An image of TOK running”),
or a combination (“An image of Tom Cruise 7OK running”).

Training. We start from the pre-trained weights for CLIP [35], and keep as many parame-
ters fixed as possible, training only the MLP adapter and the CLIP text encoder. The purpose
of training the model is to make it identity-aware. To achieve this, we train the MLP adaptor
and the CLIP text encoder to be able to discriminate amongst different identities. To do so,
we fine-tune our model on a person-recognition dataset. During training, each batch con-
tains 60% of queries containing the image token, 20% being names of celebrities as strings,
and the rest a combination of both. We found empirically that this ratio yields the optimal
performance in the general case where we might or might not have a visual query. The model
is trained using the symmetric contrastive loss as proposed in [35] until it can perform the
person-classification task sufficiently well, with the criterion being different for each evalu-
ation dataset as outlined in the implementation details.

3.1 Implementation details

Model details. Our model starts from an unmodified pre-trained CLIP dual-encoder archi-
tecture: the visual encoder is a ViT-B/32 transformer, and the text encoder is a 3M-parameter
12-layer 512-wide model with 8 attention heads as outlined in [35]. The face encoder is a SE-
ResNet-50-128D model pre-trained on the person dataset (from [5]). It is a ResNet50 [11]
with Squeeze and Excitement (SE) layers [13] that outputs 128-dimesional vector for each
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person. The output of the face encoder is processed via a two-layer MLP, taking the dimen-
sion from 128 to 256 and 256 to 512 respectively with ReLu non-linearity. This 512 vector
is then used as an input embedding to a CLIP text encoder of the same dimension. This em-
bedding is then processed as if it was a standard input to a CLIP text encoder — i.e. position
embeddings are added following the protocol in Radford et al. [35] before it is ingested by
the encoder. Note that on the video data, we employ mean pooling similarity calculator to
aggregate visual embeddings from different frames of the video on top of the CLIP vision
encoder as proposed in Luo et al. [23].

Training details. The training procedure and dataset depend on the target dataset. In gen-
eral, we would want as many known celebrities to be a part of our model and thus ideally
we would want to train it on a large VGGFace?2 [5] dataset. This dataset however contains
some of the test ‘unseen’ faces from the Celebrities in Places (CiP) dataset, and having an
embedding trained on these images would yield an unfair comparison to the baseline [45].
Therefore, for evaluation on CiP, the model is trained on the loose crops of the VGGFace
dataset [31] — it being the same pre-training dataset used by Zhong et al. [45]. We choose
to use loose crops (as opposed to traditionally used tight crops) to minimise the domain gap
to the target images that will often show entire body as we are not concerned by a potential
impact on the overall person-classification task.

The model is trained for 10 epochs, evaluating it on a held-out validation set from VG-

GFace2 at the end of every epoch. We early stop the model if it achieves 85% or 95%
accuracy on validation when trained on VGGFace and VGGFace?2 datasets respectively.
For CiA, we train the model on loose crops of VGGFace?2 [5] following the same procedure
as above. We additionally fine-tune it for 5 epochs on the training movies of CiA, to account
for the fact that CLIP might not have been trained with action classes in mind and that actors
might not be present in the VGGFace2 dataset. We keep the ratio of the person queries
constant during the fine-tuning process.

The hyper-parameters and training ratios of queries were found via a linear search based
on model performance on the CiP held-out validation set. The optimal parameters were se-
lected based on maximum average performance when using text queries, text+image queries,
or image only queries. We then use the same hyper-parameters for all other datasets.

4 Celebrities in Action Dataset

In this section we describe how we annotate the Hollywood 2.0 dataset for person-centric re-
trieval. The Hollywood 2.0 dataset consists of 12 classes of human actions and 10 classes of
scenes distributed over 3669 video clips from 69 movies (33 training, 36 testing) [24]. Exam-
ples of actions include ‘eating’ and ‘running’, whilst the scenes include the ‘office’, ‘shop’,
and ‘car’. Test sets for both actions and scenes have been manually cleaned, whilst the train-
ing set has been annotated automatically and has inherent noise (upon manual inspection of
randomly selected 50 clips, 2 were unclear). To better evaluate classes with human interac-
tions, we also include 172 clips from the High-Five human interaction dataset [33] which
has collaborative actions such as ‘hugging’, ‘kissing’ and ‘giving a high five’. The limitation
for person-centric queries is that although the clips are labelled with the actions performed,
the person performing the action is not labelled.
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it lips % in person actions scenes
SPH chps VGGFace2 (per clip) (per actor) (per actor)
train 1308 23.6 2.5 4.1 3.1
val 328 23.6 3.1 4.6 29
test 1052 38.2 2.0 39 3.1

Table 1: CiA stats. We report the total number of clips in every split, percentage of anno-
tated celebrities in the split clips that are present in the fine-tuning VGGFace?2 dataset [5].
Furthermore, we show how many people are on average present in each video clip, and we
try to find if a given actor on average performs different actions or appears in multiple scenes
in the data.

In order to form the Celebrities in Action (CiA) dataset ', we automatically annotate the
clips with the person performing the action. To achieve this we use the automatic video
annotator by Brown et al. [4]. In brief, this method uses the IMDB cast list from the movie
to obtain face images for each actor in order to classify their occurrences. On the video
side, faces are detected and tracked in each clip, and then an identity is associated with the
face track if it is classified as one of the known actors from that film. In the case of multiple
actors getting annotated (in 47% of video clips), we select the most confident one as our final
annotation. This can potentially cause incorrect or ambiguous examples as seen in the last
two columns of figure 2. We do not address this issue as ambiguous or incorrect labels are
rare. We manually verify the label correctness on a randomly selected 100 clips from the test
set and find the actor annotations to be correct for 97 of them (i.e. annotated actors are visible
in the video clip). We separate the training set into the training, and held-out validation set
(for model development) — not according to movies but rather, according to the clips in the
training data. We only use the training data to fine-tune CLIP for better action performance.

To form queries from the data, we form template sentences in three ways: 1) “{celebrity}
isdoing {action}”, 2)“{celebrity}in{place}’,and3)“{celebrity}in{place}
doing {action}”. For the “{celebrity}” token, we consider both text, image, and a
combination.

Statistics of the dataset can be found in Table 1, and some example from the annotated
dataset are given in Figure 2.

S Experiments

In this section we evaluate the CLIP-PAD model for two person-centric retrieval tasks using
compound queries. The first is ‘a person in a place’, and for this we evaluate on the existing
Celebrities in Places benchmark dataset where images are annotated with both the celebrity
and the place. The second task is ‘a person doing something’, and for this we evaluate on
the ‘Celebrities in Action’ dataset described in section 4.

Since CLIP has been trained on millions of images, it is likely that it will have seen
examples of some of the celebrites labelled with their identity. However, the long-tailed
nature of the “celebrity" classes makes it unlikely that the model would have seen all or even
most of them. Similarly, is likely that CLIP has seen all the classes of places in the Celebrities
in Places dataset. For this reason we include zero-shot baselines where we simply evaluate
the retrieval performance given the celebrity’s name. For example, for the ‘Celebrities in
Places’ dataset we evaluate both for the celebrity alone with queries such as “An image of

Uhttps://www.robots.ox.ac.uk/ vgg/research/celebrities-in-action/
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Correct Ambiguous Incorrect

Frances McDormand Tom Hanks running in  Edward Norton eating in James Stuart eating in Kevin Spacey driving a
driving a car in the car the street the kitchen the room car in the car

N\

.

Jim Carrey kissing in John Rhys-Davies Will Smith handshaking Will Smith hugging in the James Stewart asnwering
the kitchen driving a car in the car in the office office a phone in the living room

Figure 2: Examples of correctly labeled, ambiguous, and incorrectly labeled (all regarding
the person annotation) from CiA.

Tom Hanks”, as well as for celebrities in a place with queries such as “An image of Tom
Hanks in the supermarket”.

5.1 Celebrities in Places

Celebrities in places (CiP) is an established benchmark for a person-centric compound re-
trieval. Its test set contains 15.1k images with 2.3k celebrities in 16 places. This dataset con-
tains a wide variety of celebrities from the VGGFace dataset (‘seen’ — 0.6k), and some that
were not included in VGGFace (‘unseen’ — 1.7k). Places include visually different scenarios
such as the ‘beach’, the ‘stage’, and the ‘golf course’ to name a few. Note that the dataset
is not class-balanced, so the most common place (‘stage’) has over 2k examples, while the
least common place (‘desert’) has only 102 examples. Similarly, the most common celebrity
is present in over 60 images, whilst the least common ones are present in only 1. The model
is evaluated by forming a query such as ‘Celebrity in place’ (where the provided queries
cover only a subset of the 2.3k celebrities: 792 unseen and 223 seen), and ‘place’ is 1 of 16
possible places, and retrieving the correct example amongst 15.1k annotated images, and an
additional annotated distractor-images provided sampled from other datasets (36k images in
total for the annotated test set and distractors).

In table 2, we first compare the performance of our model to other baselines on non-
compound queries. For example, we would query our model with ‘Image of John
Wayne’ for a face retrieval, or *Image of the golf course’ for the place re-
trieval. We compare our model to the compound query retrieval baseline by Zhong et al. [45]
which employs two separate ConvNets to extract face and place embedding respectively and
trains a joint embedding used for retrieval with a multiclass hinge loss. We also compare
our model to a zero-shot CLIP [35] model evaluated in the same way as our model with the
txt query. We can observe that the original CLIP model can very accurately retrieve places
without fine-tuning, however, it lacks the capability of retrieving people with high precision.
The difference in performance between the seen and unseen classes is negligible. This is
likely explained by the fact that CLIP’s visual descriptor is highly discriminative ‘as-is’ and
is likely to have seen some of the celebrities belonging to the ‘unseen’ set. Lastly, we can
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Query (# targets) Retrieval rank
1 2 3 4 5 R@1/ R@5
Ben Stiller on the beach 16.7/66.7
(6)
Emma Watson in the
ice skating rink 20.0/60.0

®)

Lady Gaga at the
airport

100.0/100.0
(65}

T-Pain on the boat

&) 50/100

Figure 3: Qualitative retrieval examples for various queries on CiP [45] dataset sorted by
retrieval rank. A green boarder indicate the correctly retrieved class, and a red one indicates
an incorrect one.

see that personalising our CLIP text encoder doesn’t impact the performance of the retrieval
for ‘places’ (—1.6mAP) while it dramatically improves the performance on the face-retrieval
(+22.0mAP).

In table 3 we compare the compound-query retrieval performance. As we did not observe
large difference between the ‘seen’ and ‘unseen’ faces, we average the results weighted
by the number of queries. The personalised model performs significantly better than both
baseline results [45] and zero-shot CLIP [35]. Qualitative examples can be found in figure 2.

mAP mAP mAP
Method Method  mAP R@5
(face:unseen)  (face:seen)  (places)
[45] 74.1 73.7 51.1 5‘5] X 2(3)-2 Sg-g
CLIP [35] 60.1 59.1 83.1 LIP [35] 679
text 82.1 82.0 81.5 text 795 945
img 84.0 83.7 — mg 7777 93.0
text+img 86.7 86.6 - text+img 79.5 945

Table 3: Compound-retrieval re-
sults on the CiP dataset. Note
that we average results on
seen/unseen faces.

Table 2: Baselines results for retrieving non-
compound query-classes of the CiP dataset as
compared to our model (bottom section) with
different person prompts.

5.2 Celebrities in Action

We first evaluate three zero-shot baselines in Table 4; we measure if the model can solve actor
classification, action classification and scene classification on the training set in a zero-shot
setting. If the task is to classify an actor, we follow the original CLIP zero-shot protocol [35]
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and for a given video-clip we compute similarities to text queries using the actor names as
classes (e.g. “Image of Tom Cruise”) and pick the most similar one as a predicted
class. Classification for actions and scenes is done in an analogous way. Note again, that a
zero-shot CLIP model can classify both action and scene with a very high degree of accuracy,
however where it fails is the classification of the actor. Our model alleviates this issue to a
large extent. Furthermore, we see a notable improvement in classification accuracy (6.2%)
when querying our model with images. This is likely due to the fact that only a small propor-
tion of faces can be found in VGGFace2 dataset (see Table 1), thus the additional information
does help significantly.

Method Actor classification ~ Action classification ~ Scene classification
Random 0.7 8.3 10

CLIP [35] 9.1 73.1 91.6
CLIP-PAD-text 26.5 75.7 91.6
CLIP-PAD-img 327 - -
CLIP-PAD-text+image 33.8 75.7 91.6

Table 4: Baseline zero-shot classification results on CiA can be found in the top section.
Ours are in the bottom section, with modalities used as a query appended. Results are given
in % accuracy.

In order to compare our results with a more-traditional retrieval models, we compare
them to two modern baselines: a mixture of experts model [21], and CLIP in a zero-shot
setting using the straight-CLIP protocol [34, 35]. We report recall at ranks 1 and 5 (R@]1,
R@5). The results can be seen in the table 5. Two things stand out immediately: First is the
discrepancy between the ‘action’ and ‘place’ retrieval of zero-shot CLIP: even on ‘simple’
action classes, it does demonstrably worse when compared to the compound retrieval on
‘places’, which it recognises well. Second is the performance increase coming from our
personalised model when compared to zero-shot CLIP. Note that the baseline models cannot
query the model by using multi-modal queries. To overcome this limitation, we present a
two-stage baseline in the supplementary material.

Method query action place action + place

text rgb R@l R@5 R@l R@5 R@] R@5
CE [21] v * 353 651 367 653 321 62.5
CLIP [35] v 424 735 582 781 399 72.0
CLIP-PAD Vv 62.1 813 67.8 870 642 81.1
CLIP-PAD v 645 837 682 873 649 81.8

CLIP-PAD v v 650 854 715 886 663 82.7

Table 5: Retrieval results on CiA with celebrities doing ‘action’, in ‘place’, or combined
respectively. Our model’s results are presented in the lower part of the table. ‘query’ column
refers to the modality of the person-query used. CLIP has not been fine-tuned or modified
in any way, and we train the CE model on the training set with experts and parameters given
in the supplementary. ‘*’ denotes that while CE does not use face embedding as a query, to
make the comparison as fair as possible we include the face query embedding as an additional
‘expert’ input to the model.
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5.3 Real-world retrieval example

In order to present a real-world example of personalised retrieval, we apply our model on
the entire Season two of the Seinfeld TV show. We want to see how many occurrences of
“Michael Richards entering the room” we can correctly retrieve from a total of 483 video
clips. By our count, Richards is portrayed entering the room 26 times in the season. 21
of these were correctly retrieved in the top-25. The top-25 retrieved clips are presented in
Fig. 4.

For more information about the clip extraction process, as well as expanded results with
different models and in a different clip extraction regime, we refer the reader to supplemen-
tary material.

Figure 4: Center frames of top-25 retrieved clips from Seinfield Season 2, sorted from left to
right and from top to bottom (top left is rank 1, bottom right is rank 25). Correctly retrieved
examples have a green border, whilst incorrectly retrieved examples have a red border. Figure
best seen in colour.

6 Conclusion

We have shown how CLIP can be modifed for person-centric retrieval using a face image as
a form of prompt engineering for a free-form text query. The retrieval performance has been
demonstrated on public datasets for celebrities. However, the same method could be applied
to search personal image and video collections in order to find images of your father, say, in
a particular place or doing a particular action.

More generally, this idea of prompt engineering using an image can be extended beyond
faces to a particular instances of objects, for example a particular building or a particular car.
The prompt does not necessarily have to be an image either — we could equally prompt the
model using other modalities such as audio in order to add instance recognition in text-to-
audio retrieval [30].
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