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Abstract

Semantic segmentation is a popular task that has piqued the interest of many indus-
tries and research communities. However, acquiring segmentation labels is costly as it
often requires carefully annotating the boundaries of the objects of interest. This has trig-
gered research on weakly supervised methods with image-level labels that are less costly
to obtain. Existing methods leverage pseudo-labels produced from class activation maps
(CAM) generated with models pre-trained on ImageNet. Using CAMs introduces two
different challenges. First, ImageNet pre-training biases models to predict a single object
per image. Second, pseudo-labels are noisy. In this work, we address the first problem
by pre-training the backbone with multi-label iterated learning. In the literature, the sec-
ond problem is usually alleviated by introducing an additional consistency loss during
the backbone pre-training or as an additional CAM refinement step. Here, we propose
a generalization of Puzzle-CAMs consistency loss that supports multiple augmentations
and tiling resolutions, which helps to further reduce the noise in CAMs and improve the
final segmentation performance. The results show improved results in both PASCAL
VOC and COCO in the weakly supervised settings compared to existing methods.

1 Introduction

Semantic segmentation is a fundamental task for many computer vision applications, from
autonomous driving to medical imaging [10, 43]. To segment an image, a model must as-
sign a class label to each pixel. Thus, good performance depends on a high-level semantic
understanding of the image’s composition and contents, as well as fine-grained attention to
low-level pixel details. This is typically achieved by fine-tuning a large pre-trained image
model on pixel-level annotations [10, 18].
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Obtaining pixel-level annotations, however, can be significantly more expensive than
image-level labels. Namely, assigning a label to every pixel can be labor-intensive and time-
consuming. This has raised interest in using weaker forms of supervision such as image-level
annotations, scribbles, point annotations, or bounding boxes [41, 48, 51, 53]. The image-
level class label is the most accessible form of annotation since it already exists in large-scale
datasets like ImageNet [15]. Thus in this work, we focus on weakly supervised semantic
segmentation (WSSS) using only image-level class labels.

A particularly successful WSSS approach is to train a model for supervised image clas-
sification and produce pixel-level pseudo-labels with class activation maps (CAM) [56] and
then train a segmentation network on those pseudo-labels [1, 54]. Critically, the success
of WSSS relies on the accuracy of the pseudo annotations. However, one of the problems
with using pseudo-labels is that they tend to be noisy. This noise is usually alleviated with
post-processing steps like conditional random fields [9, 36] or inductive biases during train-
ing, such as a consistency loss [9]. Puzzle-CAM [31] is a recent example that obtained
state-of-the-art performance by leveraging both noise reduction methods. One of the main
contributions of Puzzle-CAM is a novel consistency loss that tiles the input in a grid to pro-
duce a CAM for each tile. Then it optimizes the consistency between the CAM resulting
from stitching back all the tiles and the CAM produced by the original untiled input.

In this work, we identify three different improvements to increase CAM-based WSSS
methods’ performance without increasing inference time. First, it is known that ImageNet
pre-trained backbones are biased toward predicting a single class per image [6]. Since se-
mantic segmentation datasets often contain many distinct objects, this bias could hinder final
performance. Thus, we pre-train the backbone with a modified version of multi-label iter-
ated learning (MILe) [46], an iterated learning procedure that allows ImageNet models to
produce multiple labels per image from single label annotations. Second, state-of-the-art
methods like Puzzle-CAM output a fixed number of tiles per input image. This constrains
the consistency loss to optimize the model for that particular number of tiles. We relax this
by randomizing the number of tiles at every iteration. Finally, we generalize the tiling oper-
ation to a larger set of transformations. The resulting method, Consistency-CAM achieves
68.2% mloU on PASCAL VOC and 40.8% mloU on COCO datasets.

Our contributions are: (i) We identify three different improvements for CAM-based
WSSS methods: multi-label relaxation, variable tile size, and consistency with random aug-
mentations. (ii)) We show that each improvement individually increases mloU on different
backbones. (iii) The resulting model, which we name Consistency-CAM, outperforms ex-
isting methods with the same level of supervision on the PASCAL VOC 2012 dataset and
demonstrate competitive performance on the COCO dataset.

2 Related Work

Our work lies at the intersection of weakly supervised, self-supervision and iterated learning.
Below we describe each of these topics and how existing methods relate to our algorithm.

Weakly Supervised Semantic Segmentation (WSSS) is a popular topic where the idea
is to vastly reduce the required annotation cost for acquiring a training set. According to
Bearman et al. [5], manually collecting image-level and point-level labels for the PASCAL
VOC dataset [18] took only 20.0 and 22.1 seconds per image, respectively. These annotation
methods are an order of magnitude faster than acquiring full segmentation labels, which is
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(a) Puzzle-CAM (b) Puzzle-CAM+aug (c) Consistency-CAM

Figure 1: Qualitative visualizations of predicted segmentation masks on VOC 2012.

239.0 seconds. Other forms of weaker labels were explored, such as bounding boxes [32]
and image-level annotation [57]. Li et al. [40] have shown that using a denoised version of
pseudo-masks generated by class activation maps has shown to be effective for both COCO
and PASCAL datasets. An affinity-based denoising method of those pseudo masks was pro-
posed by Ahn and Kwak [2]. The goal is to use a network that can learn to refine masks
based on neighboring features and colors. Another method to denoise those masks is recur-
sive learning and data augmentation combining different masks [30]. Our work is inspired
by Puzzle-CAM [31], which uses a reconstruction regularization by breaking the image into
smaller patches and enforce a consistency between the segmentation predictions of the image
and corresponding smaller patches. In this work, we focus on image-level supervision.

Self-supervised Learning (SSL) approaches aim at designing effective surrogate tasks to
train a model without additional extrinsic annotations. Some self-supervised pretext strate-
gies are relative affine and spatial transformation prediction [16, 20], inpainting [44], col-
orization [37] and recently, contrastive learning over multiple augmentations that assume
visual embeddings are invariant under a set of transformations [4, 11]. In segmentation
tasks, SSL based methods attempt to recognize classes of dense pixels. Clustering is one
way to discover semantic classes and perform recognition on pixels or patches. IIC [29]
performs invariant information clustering by maximizing the mutual information between
encoded image pairs. More recently, Cho et al. [12] conducts alternative offline pixel-wise
clustering and online training, where the training is led by the invariance and equivariance
objective on the assigned clusters. Puzzle-CAM [31] breaks the image into tiles and ensures
that the global segmentation output on the whole image matches the individual tiles. Our
approach generalizes Puzzle-CAM using augmentation invariant SSL framework with more
general transformations and by incorporating iterated learning.

Iterated Learning was proposed by Kirby [33, 34] to model language evolution via cul-
tural transmission in humans. Languages need to be expressive and compressible to be
effectively transmitted through generations. This learning bottleneck favors languages that
are compositional as they can be easily learned by the offsprings and support generalization.
It has seen many successful applications, especially in the emergent communication litera-
ture [13, 14, 21, 47]. Recently, MILe [46] emerged as an iterated learning procedure that
allows ImageNet models to produce multiple labels per image from single label annotations.
Our model uses a variation of MILe to help improve its WSSS capabilities.
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3 Methodology

We follow the typical multi-stage WSSS pipeline based on CAM [54]. First, a model is
pre-trained for image classification. Second, the pre-trained model extracts class activation
maps (CAM) with a refinement process to reduce noise [31]. Finally, CAMs are used as
pixel-level pseudo-labels to train the segmentation model. In this work, we focus on the first
two stages.

3.1 Model pretraining.

ImageNet pre-trained models tend to predict a single label per image. This constraint is un-
realistic for semantic segmentation, where multiple objects can be present at the same time.
Following Rajeswar et al. [46], we leverage multi-label iterated learning to learn a multi-
label backbone from single labels.

Multi-label Prediction via Iterated Learning. Following the same procedure described in
[46], we train a teacher network with binary cross entropy for a few (k;) iterations. Then we
initialize a student network with the teacher weights and train it for a few iterations (k;) on
pseudo-labels predicted by the teacher. Pseudo-labels are obtained by applying a threshold
(denoted by p) on the teacher’s output, resulting in a binary vector. Once trained, the student
becomes the teacher, and the cycle is repeated until convergence. We restrict the imitation
learning phase to a limited learning budget (an essential component of the iterated learning
framework [33]). This learning bottleneck regularizes the student model to avoid the specific
irregularities in the data. In our setting, we enforce the bottleneck via the number of learning
updates akin to Rajeswar et al. [46].

Improving GAP with noisy-or. Typically, CAMs are obtained from a model trained by
applying global average pooling (GAP) to the backbone’s feature maps before applying a
classifier that returns a 1-d vector of class probabilities [56]. However, this forces the major-
ity of pixels in a feature map to belong to a certain class so that the probability for that class
is high when they are averaged and fed to a classifier. In images where there are multiple
objects, this would be equivalent to enforcing the presence of an object in the whole image.
To alleviate this problem, we propose applying the classifier before GAP, obtaining class
activation maps (CAMs), and then reducing the CAMs to a 1-d vector of class probabilities
by applying the noisy-or operation. The noisy-or operation is a function originally designed
for Bayesian networks [45] that assumes a disjunctive interaction among the parents of a
node (e.g., multiple class predictions for a single image). The advantage of the noisy-or is
that just one pixel must belong to a class to mark it as present in the output. Formally, let d
be the spatial dimensionality of a CAM (height times width), and ¢ the number of classes in
the dataset. The noisy-or function f : R%¢ — R€ returns a vector of class probabilities when
applied to the CAM (A): p(class;=1)=1— H?:] (1—A; ;). We perform this operation both
for the teacher and the student training during iterated learning (see Fig.4).

3.2 CAM Refinement with Puzzle-CAM.

CAMs obtained after training a model for image classification tend to be noisy. The recent
Puzzle-CAM proposes to fine-tune the pre-trained model with a consistency loss that ensures
that CAMs produced in local regions of an image match the overall CAM of the image (A).
For that, they divide the image (/) in 2 x 2 equally-sized tiles (1} ;...1»2). Then, the CAMs
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Figure 2: Overview of Consistency-CAM. We train a model to produce CAMs from an
image and multiple augmentations of it (¢;..t,). Then we perform the same augmentations
to the CAM of the original image and enforce them to be the same as the CAMs of the
augmentations. An additional classification loss is applied to each of the CAMs.

of those tiles (Aj,1...A2 ) are merged back into a single CAM (A™). The consistency loss
encourages the reconstructed CAM to match the original CAM. Their overall objective is:

»Cpuzzle = Ecls + »Cp»cls + O‘»Crea (D

where L and £,_; is the multi-label soft-margin loss with respect to the global average
pooling (GAP) of A and A’*, respectively. The scalar a weighs the consistency loss (details
outlined in Sec. 4.1). L, is the consistency loss:

Lre = ||A—A"|;. 2)

The goal is to encourage tile-based predictions to be consistent with the overall image pre-
diction. To satisfy this, the model must reduce noise in the generated CAMs.

We propose to generalize the Puzzle-CAM objective in two different ways. First, we
use multi-resolution tiling consistency, where we relax the tiling operation from 2 x 2 to any
value in {2 x2,4x4,8x8,16 x 16}. Second, we introduce additional consistency losses
that enforce CAM to be invariant to different data augmentations (see Fig.2). Since CAMs
generated from augmented images cannot directly be compared with the original CAM, we
apply the same augmentations to the original CAM before computing the consistency loss.
For example, given the CAM of a flipped and an unflipped version of an image, we would flip
the CAM of the unflipped version before comparing it with the CAM of the flipped version.
Formally, let A’ be the CAM corresponding to an image (I) that has been transformed with
transformation A’ = 7(A). The consistency loss for augmented images is defined as ||A" —
t(A)||1. The overall loss for augmentation is the sum of its consistency loss and classification
loss (e.g. Eq. 1). We apply this loss on three different augmentations: (i) random crop (L,.),
(ii) horizontal flip (Lps), (iii) random resize (L,y). The final loss that we optimize during
training is:

L= Acpuzz]e + »Crc + Ehf + ﬁr& (3)

4 Experiments

4.1 Experimental Setup

Implementation Details. For learning CAMs and pseudo-labels, we used the stochastic
gradient descent (SGD) optimizer with weight decay 4e —5. The initial learning rate was
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CAM

Figure 3: Performance on Pascal
VOC2012 using our Pre-trained model. Figure 4: Backbone pre-training with
Noisy-OR.

set to 0.1 and decayed polynomially at a rate of 0.9. The images were randomly re-scaled
in the range of [320, 640] and then cropped to 512 x 512 as the inputs to the model. For
the weight on reconstruction term in Eq.1, we used o = 4 as the maximum value. Further-
more, the o value is linearly increased up to its maximum value by half epochs for all the
experiments. The pipeline and the details are similar to the ones followed in [3, 31]. After
obtaining the final pseudo-labels for segmentation, we train the DeepLabv3+ model with
ResNet backbones for the segmentation. We followed the same procedure and details de-
scribed in [8]. A polynomial schedule with an initial learning rate of 0.007 was used, batch
normalization parameters [28] were fine-tuned when output stride = 16, and used random
scale data augmentation during training. When training the COCO 2014 dataset, we used
the hyperparameters identical to the ones used for PASCAL VOC 2012 dataset.

Datasets. We evaluate our approach on the PASCAL VOC2012 and the COCO datasets.
PASCAL VOC consists of 20 foreground object classes and one background class. We aug-
ment this version of the dataset as we leverage extra annotations provided by the Semantic
Boundary Dataset [22], resulting in 10,582 training images. Note that the original dataset
contains 1,464 (train), 1,449 (val), and 1,456 (test) pixel-level annotated images. During the
whole training process, we only adopt the image-level class labels for supervision. COCO
consists of 80 categories belonging to a wide variety of everyday objects. The train set is
composed of 80K images, while the validation set has 40137 images. We follow the experi-
mental setup of [24, 25].

Metrics. Following common practice for semantic segmentation [2, 18], we evaluate our
models with the Intersection over Union (IoU) which measures the overlap between the pre-
diction and the ground truth: IoU = TP/ TP +FP +FN , where TP, FP, and FN are the number
of true positive, false positive, and false negative pixels across all images in the test set.
Since each image may contain multi-class labels, we calculate the mean intersection over
union (mloU) of all classes to evaluate the performance.

4.1.1 Methods and Baselines

We compare our method with Puzzle-CAM [31] and the following methods:

AffinityNet [1] refines CAMs by leveraging an affinity network that predicts the semantic
affinity between neighboring pairs of pixels.

SEAM [54] refines CAMs using a pixel correlation module that captures context appearance
information for each pixel and alters the original CAMs by using learned affinity maps.
IRNet [3] leverages class-boundary maps to learn pairwise affinity scores to refine instance-
wise CAMs for weakly supervised instance segmentation.
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Method ‘ Backbone ‘ Supervision ‘ val mloU | test mloU
AffinityNet [1] ResNet50 T 61.7 63.7
DSRG [27] ResNet101 +S 61.3 63.2
SeeNet [26] ResNet101 I+S 63.1 64.3
IRNet [3] ResNet50 T 63.5 64.8
Puzzle-CAM [31] ResNet50 v 63.33 63.9
ICD [19] ResNet101 T 64.1 64.3
SEAM [54] ResNet38 T 64.5 65.7
FickleNet [38] ResNet50 +S 64.9 65.3
CONTA [17] ResNet38 T 66.1 66.7
SC-CAM [7] ResNet101 T 66.1 65.9
Sun et al. [52] ResNet101 A 66.2 66.9
PMM [39] ScaleNet101 T 67.1 67.7
Puzzle-CAM ResNest101 T 66.81 67.7
Consistency-CAM ResNet50 A 64.26 64.4
Consistency-CAM w/o IL | ResNest101 T 68.20 68.5
Consistency-CAM ResNest101 T 68.89 69.1

Table 1: Performance on PascalVOC. Comparison with existing methods on PASCAL
VOC2012 val set. All results are evaluated in mIloU(%). Z represents the image-level label
and S indicates the saliency label.

SEC [35] optimizes a loss that seeds segmentation masks with weak localization cues, an-
other that expands objects based on the information about which classes can occur in an
image, and another that constrains the segmentations to coincide with object boundaries.
PMM [39] identifies the category independently and leverages variation smoothing to refine
the CAM by their distribution statistics.

CONTA [17] leverages iterative post-processing to refine CAM where it iterates through the
whole process of WSSS including a sequence of model training and inference.

4.2 Results

We provide experiments showing the effects of our proposed approach on semantic segmen-
tation tasks. Before diving into the WSSS setup, we study the benefits of our iterated learning
procedure for semantic segmentation on PascalVOC. We employ ImageNet [15] pre-trained
ResNet-101 [23] that is trained using our aforementioned iterated learning procedure to ex-
tract dense feature maps by atrous convolution. The resulting model is then evaluated on
the PASCAL VOC 2012 semantic segmentation benchmark in Table 3. We observe that
our procedure surpasses baseline methods on both ResNet50 and ResNet101 backbones and
with both variants of DeepLab architectures. With DeepLabV3, we observe a substantial im-
provement on mIOU for ResNet-50 and ResNet-101 respectively than on DeepLabV3Plus.
Encouraged by the benefits of Consistency-CAM on the supervised segmentation task, we
continue to leverage the pre-training strategy for the WSSS tasks. In Sec. 4.3, we explore
the benefits of our complete approach to WSSS tasks on VOC and COCO datasets.
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Figure 5: CAM visualizations on COCO (train). (a) original images. (b) Puzzle-
CAM [31]. (c) Consistency-CAM (ours)

4.3 Weakly Supervised Segmentation

Pseudo-labels from the CAMs are obtained using the combination of losses formulated in
Eq. 2. To improve the performance of pixel-level pseudo-labels we also train AffinityNet [2]
similar to Jo and Yu [31]. A detailed analysis of the initial accuracy of pseudo-labels on the
VOC training set is discussed in a later section (see Sec. 4.4). We train the segmentation
model DeepLabV3 [10] using Consistency-CAM on the obtained pseudo-labels of the train-
ing set and report the results on PASCAL VOC2012 validation. Table 1 shows that for both
ResNet50 and ResNet101, our results outperform those of the existing methods with super-
vision at the same level (i.e., WSSS-Image Level supervision) or higher granular supervision
cues (e.g., salient object supervision requiring auxiliary object boundary information, extra
dataset and segment-based object proposals). Specifically, our ResNest101 model surpasses
Puzzle-CAM’s performance by more than 2% leveraging both the transformations and Iter-
ated Learning (IL) and 1.4% with transformation alone, thereby demonstrating the individual
necessity and effectiveness of IL and the consistency loss. The backbones leveraged for the
segmentation framework are listed in Table 1. Qualitative results in Fig.1 show that adding
additional augmentations to Puzzle-CAM (a) results in more accurate masks (b), and that
these masks can be further improved with iterated learning and multi-resolution tiling (c).

4.3.1 WSSS Experiments on COCO

COCO is amore challenging setting than VOC due to the drastic variability in objects size. In
particular, there are a significant number of images with tiny objects that makes the task espe-
cially difficult with image-level annotations. For this reason our performance is competitive
to the ScaleNet101 backbone version of PMM [39] which is more robust to scale changes
than ResNet or ResNest backbones. However, our method outperforms Puzzle-CAM as seen
quantitatively in Table 2. We also compare with methods that rely on additional granular
cues such as the saliency model and segment-based object proposals that have an advantage
over our method that use image level supervision. Taken as a whole, these results suggest
that our approach is able to effectively leverage weak supervision in the form of high-level
annotations. Qualitative visualization of the prediction CAMs and comparisons with the
baseline is shown in Fig.5
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Method ‘ Backbone ‘ RW ‘ val mloU
BFBP [49] VGG16 7 20.4
SEC [35] VGG16 7 22.4
DSRG [27] ResNet101 I+S 26.0
SEAM [54] ResNet38 A 31.7
CONTA [17] ResNet38 7 32.8
PMM [39] Res2Net101 z 35.7
PMM [39] ScaleNet T 40.2
Puzzle-CAM ResNest101 A 38.9
Consistency-CAM | ResNestlOl | Z | 408

Table 2: Performance on COCO. Comparison with existing methods on COCO2014 val
set. All results are evaluated in mloU(%). Z represents the image-level label and S indicates
the saliency label.

Method ‘ Lyuzzie  Lirans  Linuiti—res TrainmloU 52.5 o 532

AffiniyNet [1] - - - 47.82 50.6 51.0

IRNet [3] - - - 48.3 <

CONTA [17] . . - 48.8 E a7s

Puzzle-CAM [31] v 50.14

Consistency-CAM v v 51.21

Consistency-CAM v v 51.88

Consistency-CAM v v v 53.64 0 02 04 0.6 08 0.9
Table 3: Ablation on CAM classification Comparison Figure 6: Effect of the IL
with different effects of each component of our method. threshold on performance.

4.4 Ablation Analysis on CAMS and Pseudo-labels

The proposed scheme aims to provide segmentation-specific CAMs to improve the qual-
ity of the pseudo-labels. In order to verify the effectiveness of our method in generating
CAMs and Pseudo-labels, we summarize the results of the CAMs and the pseudo-labels of
the PASCAL VOC2012 training set with competitive methods and analyze different compo-
nents of our approach. Table 3 shows the initial accuracy of the pseudo-labels on the VOC
training set before training the AffinityNet on the obtained pseudo-labels. We observe that
our framework achieves the mloU of 53.6%. Our method surpasses the advanced method
Puzzle-CAM by 3% and outperforms CONTA [17]. The Consistency-CAM ablations reveal
that both the transformation based consistency loss and the multi-resolution tiling contribute
to the improved performance. In a furhter ablation, we study the effect of the threshold
used in the iterated learning pre-training on the final performance on PASCAL dataset (see
Fig.6). Threshold value (p) is used by IL to produce multi-pseudo-labels from sigmoid out-
put activations. Larger threshold values yield lower performance as the student network is
constrained to predict sparser labels during the pre-training stage and can potentially force
the teacher network to output empty labels.
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5 Conclusion

We introduced Consistency-CAM, a WSSS method that enhances Puzzle-CAM during back-
bone pre-training and CAM refinement. During backbone pre-training, we replace the single-
label classification task for multi-label classification with multi-label iterated learning. We
also replaced global average pooling by a noisy-or operation which removes the bias that
all output pixels in a feature map must belong to the target class. We found that the result-
ing backbone is more suitable for image segmentation, where multiple objects are typically
present in a single image. During CAM refinement we relaxed the Puzzle-CAM consistency
loss with multi-resolution tiles and three additional augmentations. We found that the re-
sulting model outperforms or matches previous performance results on PASCAL VOC and
COCoO.
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FickleNet [42] . .
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ConsisstencyCAM ~ 90.1 819 354 847 67.6 679 875 805 865 314 739 525 840 749 746 790 44, 1470 !
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6 Appendix

SAI ISSAM, PAU, DAVID AND AARON: CONSISTENCY-CAM
s = 5 2 2 5 5 & ]
AffinityNet [50] 88.2 682 306 81.1 496 610 778 66.1 751 29.0 660 402 804 620 704 737 425 707 426 68.1 51.6 61.7
SEAM [55] 88.8 685 333 857 404 673 789 763 819 29.1 755 481 799 738 714 752 489 798 409 582 530 645
515 71.1 834 744 836 241 734 474 782 740 688 732 478 799 370 573 64.6 649
53.0 538 823 785 704 712 402 783 429 668 588 66.1
447  84.1 784  46.6 68.9
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