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• We  identify and propose three key improvements to  high performing weakly supervised 
semantic segmentation (WSSS) tasks.  The resulting Consistency-CAM framework attains 
superior performance on  PascalVOC and MSCOCO datasets.

Qualitative Results

• We pretrain the backbone for multi-label classification.
• We change the GAP operation by a noisy-or operation
• We propose a more general set of augmentations for CAM refinement. 
• Finally, these three improvements result in better performance on COCO and Pascal.
• Our method improves Puzzle-CAM by several points.

• We also see that training the backbone with multi-label learning is beneficial.

1. we train the backbone with MILe, which learns multi-label representations from singly 
labeled images.

– Ensures the backbone is able to predict multiple classes per image, 
2. we replace GAP with a differentiable noisy-or operation. This  marks the  presence of a 

class in an image  independent to the number of pixels that belong to that class.

– With noisy-or a class will be active with high probability even if only one pixel is 
activated for that class.

3. we propose a more general set of transformations.
– we use a consistency or reconstruction loss to ensure that the CAM is robust to a 

diverse set of augmentations as well as the puzzle operation in with different tile sizes.

• Typical pipelines for WSSS are trained in two stages. 
– 1. Train a classification network with global average pooling to obtain 2d class activation 

maps (CAMs).  2. Train a segmentation network using CAMs as pixel-level supervision.
– Issue: CAMs are noisier than real labels and needs refinement using some regularization.

• Puzzle-CAM splits the image into multiple tiles and ensures that the CAM for the image 
matches the CAM obtained after stitching the individual CAMs.
– However, pre-training using single-label prediction has a negative effect since image 

segmentation datasets have more than one class.
– Also, GAP enforces the network to overrepresent the labeled objects in the feature maps
– Lastly, Puzzle-CAM Uses fixed tile sizes & the puzzle operation can be complemented with 

other transformation
• We address the above three issues highlighted using our  Consistency-CAM pipeline.
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