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TL;DR

 We identify and propose three key improvements to high performing weakly supervised
semantic segmentation (WSSS) tasks. The resulting Consistency-CAM framework attains
superior performance on PascalVOC and MSCOCO datasets.

Intfroduction

» Typical pipelines for WSSS are trained in two stages.

— 1. Train a classification network with global average pooling to obtain 2d class activation
maps (CAMs). 2. Train a segmentation network using CAMs as pixel-level supervision.

— Issue: CAMSs are noisier than real labels and needs refinement using some regularization.

« Puzzle-CAM splits the image into multiple tiles and ensures that the CAM for the image
matches the CAM obtained after stitching the individual CAMs.

— However, pre-training using single-label prediction has a negative effect since image
segmentation datasets have more than one class.

— Also, GAP enforces the network to overrepresent the labeled objects in the feature maps

— Lastly, Puzzle-CAM Uses fixed ftile sizes & the puzzle operation can be complemented with
other fransformation

« We address the above three issues highlighted using our Consistency-CAM pipeline.

(c) Consistency-CAM

(a) Puzzle-CAM

(b) Puzzle-CAM+aug

Method

1. we frain the backbone with MILe, which learns multi-label representations from singly
labeled images.

— Ensures the backbone is able to predict multiple classes per image,

2. we replace GAP with a differentiable noisy-or operation. This marks the presence of @
class in an image independent to the number of pixels that belong to that class.

—  With noisy-or a class will be active with high probability even if only one pixel is
activated for that class.

3. we propose a more general set of fransformations.

— We use a consistency or reconstruction loss to ensure that the CAM is robust to @
diverse set of augmentations as well as the puzzle operation in with different file sizes.
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Quantitative Results
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Conclusions
« We pretrain the backbone for multi-label classification.
« We change the GAP operation by a noisy-or operation
« We propose a more general set of augmentations for CAM refinement.
 Finally, these three improvements result in better performance on COCO and Pascal.
« Our method improves Puzzle-CAM by several poinfts.
« We also see that training the backbone with multi-label learning is beneficial.
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