Scaling up Instance Segmentation using Approximately Localized Phrases

Supplementary material

Karan Desai ¹ Ishan Misra ² Justin Johnson ^{1,2} Laurens van der Maaten ² ¹ University of Michigan
² Meta Al

The supplementary material is organized as follows:

- In Sec. 1, we include extra training details and evaluation protocol of main experiments.
- In Sec. 2, we show randomly selected qualitative outputs from our model.
- In Sec. 3, we provide a plausible explanation to why FCOS-MO is less sensitive to noisy boxes, by simulating imprecise boxes in COCO.

1 Training Setup: Additional Details

Our training setup involves learning to segment |C| = 300 classes from Open Images. We reported two separate metrics, AP₅₀-base and AP₅₀-novel for |B| = 60 base and $|\mathcal{N}| = 240$ novel classes respectively. The tables below list all these classes in alphabetical order. Class names mentioned with a blue italic style are novel, remaining are base classes.

Out of 60 *base* classes, 51 classes occur as-is in COCO class ontology. We included five *base* classes that are differently worded but semantically identical: *Doughtnut* \Rightarrow *donut*, *Computer mouse* \Rightarrow *mouse*, *Computer keyboard* \Rightarrow *keyboard*, *Microwave oven* \Rightarrow *microwave*, and *Kitchen knife* \Rightarrow *knife*. Finally, we also marked four OID classes *Man*, *Woman*, *Boy*, *Girl* as *base* classes, since the *person* class in COCO provides abundant mask annotations.

Adhesive tape	Aircraft	Airplane	Alarm clock
Alpaca	Ambulance	Apple	Asparagus
Backpack	Bagel	Ball	Balloon
Banana	Barge	Barrel	Baseball bat
Baseball glove	Bat	Beaker	Bear
Beer	Bell pepper	Belt	Bicycle wheel
Billiard table	Binoculars	Bird	Blue jay
Book	Boot	Bottle	Bowl
Box	Boy	Bread	Briefcase
Broccoli	Bronze sculpture	Brown bear	Bull

Table 1: OID classes, part 1. Blue italics indicate novel classes (240 in total).

DESAI ET AL.: SCALING UP INSTANCE SEGMENTATION USING ALPS

Burrito	Bus	Bust	Cabbage	
Cake	Camel	Camera	Canary	
Candle	Canoe	Car	Carnivore	
Carrot	Cat	Cattle	Cello	
Cheetah	Chest of drawers	Chicken	Chonsticks	
Christmas tree	Clock	Cocktail	Coffee	
Coffee cun	Coin	Common fig	Computer keyboard	
Computer mouse	Cookie	Corded phone	Couch	
Cowboy hat	Crocodile	Croissant	Cucumber	
Dagger	Dice	Digital clock	Dog	
Dog hed	Dolphin	Door handle	Doughnut	
Drass	Drink	Drinking straw	Duck	
Dumbhall	Eagle	Elephant	Emelone	
Falcon	Eugre	Elephant Filing cabinat	Envelope Fire hydrant	
Fich	Flag	Flashlight	Flower	
Flowerpot	Fluta	Fushinghi Food processor	Flower	
Flowerpol	Frue	Envire new	Circoffe	
Fox Circl	Flog	Frying pan	Gilane	
Gin	Giove	Goal	Golajish	
Goose	Grape	Grapefruit	Guacamole	
Guitar	Hamburger	Hamster	Handbag	
Handgun	Harbor seal	Harpsichord	Hat	
High heels	Horse	Hot dog	Human ear	
Human mouth	Jaguar	Jeans	Jet ski	
Jug	Juice	Kangaroo	Kettle	
Kitchen knife	Kite	Knife	Laptop	
Lemon	Leopard	Light switch	Lighthouse	
Limousine	Lion	Lizard	Loveseat	
Luggage and bags	Lynx	Man	Mango	
Microwave oven	Miniskirt	Missile	Mobile phone	
Monkey	Motorcycle	Mouse	Muffin	
Mug	Mule	Mushroom	Nail	
Orange	Ostrich	Otter	Oven	
Owl	Oyster	Pancake	Paper towel	
Parrot	Peach	Pear	Pen	
Penguin	Person	Piano	Picture frame	
Pig	Pillow	Pitcher	Pizza	
Plastic bag	Platter	Polar bear	Pomegranate	
Potato	Power plugs and sockets	Pressure cooker	Pretzel	
Printer	Pumpkin	Punching bag	Rabbit	
Raccoon	Racket	Radish	Raven	
Reptile	Rhinoceros	Rocket	Roller skates	
Rose	Rugby ball	Ruler	Sandwich	
Saucer	Saxophone	Scarf	Scissors	
Screwdriver	Sculpture	Sea lion	Sea turtle	
Seat belt	Segway	Shark	Sheep	
Shirt	Shorts	Shower	Skateboard	
Skirt	Skull	Skyscraper	Slow cooker	
Snake	Snowmobile	Sock	Sofa bed	
Sombrero	Sparrow	Spatula	Spoon	
Sauash	Sauirrel	Starfish	Stop sign	
Strawberry	Studio couch	Submarine sandwich	Suit	
Suitcase	Sun hat	Sunflower	Surfboard	
Swan	Swim can	Swimwear	Sword	
Table tennis racket	Tablet computer	Tank	Tan	
Tart	Tavi	Теа	Teanot	
Teddy bear	Tannis hall	Tennis racket	Tie	
Toor	Toostor	Tailat	Toilet paper	
nger	Toastef	Tollet	1011ei paper	

Table 2: OID classes, part 2. Blue italics indicate novel classes (240 in total).

Tomato	Torch	Tortoise	Towel
Toy	Traffic light	Traffic sign	Train
Trousers	Truck	Turkey	Turtle
Van	Vase	Vehicle registration plate	Volleyball
Waffle	Washing machine	Waste container	Watch
Watermelon	Whale	Wheel	Whiteboard
Wine	Winter melon	Wok	Woman
Woodpecker	Wrench	Zebra	Zucchini

DESAI ET AL.: SCALING UP INSTANCE SEGMENTATION USING ALPS

Table 3: OID classes, part 3. Blue italics indicate novel classes (240 in total).

Extracting phrases from LocNar captions: Sec 3.1 of the main paper explains how we obtained ALPs from LocNar-OID. Phrases in ALPs are chunks of consecutive *adjectives* and *nouns* occurring in captions. LocNar captions often mention words like *sky* and *water*, which are commonly called *stuff* classes, and not targetted for instance segmentation. Captions also contain words that convey position, orientation, and spatial arrangement of objects, for example "In the *background* I see buildings...". Such abstract nouns do not provide any meaningful supervision for segmenting individual *thing* objects.

We manually define a blocklist of noun words and discard phrases that contain them. Our filtering is very lightweight as compared to deciding full-scale label ontologies. Note that LocNar was not collected with an intent to target instance-segmentation – such filtering can be minimized by incorporating well-defined instructions during data collection.

Stuff classes and very generic words							
air	ceiling	cloud	floor	grass			
ground	group	ice	item	lake			
land	object	ocean	platform	river			
road	room	sand	sea	sky			
snow	stone	surface	wall	water			
Nouns conveying spatial relationships							
foreground	background	top	bottom	left			
right	middle	center	front	back			
side	backside	inside	outside	outdoor			
indoor	corner	area	view				
Meta information about the image file							
image	blur	watermark	text				
Reference to time and weather							
day	night	time	daytime	nighttime			

Table 4: Blocklist of nouns while extracting phrases from LocNar-OID.

2 Qualitative Examples

In the main paper, we discussed common success and failure modes of our ALP-supervised FCOS-MO with selected qualitative predictions. Here we provide some *randomly selected* qualitative examples in Fig. 1. All masks were predicted with at least 20% confidence threshold and filtered by applying NMS with 0.2 IoU threshold. These results suggest that object classification is a more challenging subtask than mask prediction – our model tends to predict high-quality masks despite failing to predict accurate labels (last row). We view this as a positive indication, that instance segmentation models can be scaled beyond existing datasets like COCO simply by scaling up language supervision rather than using more masks.

Accurate labels with accurate masks:

Duplicate inaccurate labels/masks with an accurate mask:

Figure 1: **FCOS-MO predictions:** Our model predicts quite accurate masks for diverse visual objects. Incorrect predictions (second and third rows) largely suggest that our model fails at classifying more often than failing to predict high-quality masks.

Per-class pooled predictions: We show more qualitative mask predictions for novel classes by pooling them across validation set – for each object class, we obtain predicted masks on OID-v6 val split, sort them by confidence score, and randomly select 4–5 predictions out of top-10. Fig. 2 below shows mask predictions for a few more classes, similar to those in main paper. We find that pooled mask predictions, even though selected randomly, are quite accurate – indicating that the model predicts accurate masks and labels with high confidence. However our model is not perfect, we observe similar failure modes as earlier, where either the predicted class or the quality of predict mask is inaccurate.

Figure 2: FCOS-MO outputs obtained by pooling per-class predictions.

3 Understanding FCOS-MO's Robustness to Noisy Boxes

Figure 3: **Understanding FCOS-MO's robustness to noisy boxes:** We observe the cumulative distributions of area ratio (*blue*) and L2 distances between centers (*green*) of simulated and true boxes in COCO. The shift in box centers is less than distortion in area of boxes.

One major difference in modeling design of FCOS as compared to R-CNN style detectors is the use of localization supervision based on bounding box centers. FCOS performs *centerbased matching* for supervision, and also adds an auxiliary centerness objective that uses box centers to learn localization.

We simulate imprecise boxes with COCO dataset. As a simple way to distort box edges, we perform box quantization as used in training FCOS-MO with a fixed Q = 32. Consider the example in Figure 3 (left) with an imprecise box (*cake*). Let its area be A_S and the area of

the true box in COCO be A_T . Figure 3 (right,top) shows the cumulative distribution of ratio (A_S/A_T) for all boxes in COCO. We observe that > 50% boxes are > 3× larger than original boxes. IoU-based matching is sensitive to GT box area – such imprecise boxes may lead to incorrect anchor assignments for RPN, and further have cascaded effect in the second stage.

On the other hand, FCOS matches features based on the their proximity to GT box centers $[\square, \square]$. Figure 3 (right,bottom) shows the cumulative distribution of L2 distance $d(C_S, C_T)$ between centers of original and simulated boxes, normalized by size of the original box. This distribution is much steeper than area ratio, which suggests that FCOS may possibly be well suited for dealing with boxes with imprecise edges.

References

- Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS: A Simple and Strong Anchor-Free Object Detector. *TPAMI*, 2020. 6
- [2] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points. arXiv preprint arXiv:1904.07850, 2019.