
- Current Dynamic SLAM methods do not mask objects when needed, or mask

them when it is not necessary. The problem is when to mask, not what to mask.

- The challenge is to mask classes of objects only when appropriate, i.e., when it

improves SLAM performance, without priors on motion.

SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS: 

LEARNING WHEN TO MASK

To mask or not to mask, that is the question.
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Automatic dataset annotation

Define masking decisions at a low cost for self-supervised training

Background

Method: SLAM with Temporal Masking
New paradigm: decide when to mask certain classes.
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Sample temporal masks uniformly among all possible temporal masks (space size: 2^sequence length) 

using a binary tree whose root-to-leaf iterations preserve sampling uniformity.

Results

Comparison with the state of the art on various datasets in their preferred mode. Our method outperforms the state of the art. 

Unlike the USM, ATE RMSE (trajectory accuracy) and Tracking Rate (% of tracked frames) may be misleading in difficult scenarios.

Additional contributions: USM Metric + ConsInv Dataset (150 sequences)

Our SLAM: Dynamic SLAM with Temporal Masking

Reference Dynamic SLAM with full masks

Basic SLAM:  No masks

Later in the same sequence: failure of “Full Masks” 

due to excessive masking.

Our SLAM: Dynamic SLAM with Temporal Masking

Reference Dynamic SLAM with full masks

Basic SLAM:  No masks

Reference Dynamic SLAM with full masks
Preventing drift in TUM RGB-D dataset Preventing drift and excessive 

masking in ConsInv-Outdoors dataset

To mask or not to mask, our network shall learn.

Question
- SLAM : Simultaneous Localization and Mapping

- Dynamic SLAM: SLAM in Dynamic environments. Track and match image

features that are not on dynamic objects.

Conclusion

With the proposed Temporal Masking paradigm, we

overcame the current limits of Dynamic SLAM on real

data, especially in difficult scenarios.
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SLAM with Temporal Masking

Includes Temporal Masking Network trained with automatically annotated dataset.
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