

SELF-IMPROVING SLAM IN DYNAMIC ENVIRONMENTS: LEARNING WHEN TO MASK Paper 0654

Authors:

Adrian Bojko Mohamed Tamaazousti

Romain Dupont i Hervé Le Borgne

Emails: adrian.bojko@cea.fr ron mohamed.tamaazousti@cea.fr her

romain.dupont@cea.fr herve.le-borgne@cea.fr

Université Paris-Saclay, CEA, List

To mask or not to mask, that is the question.

Background

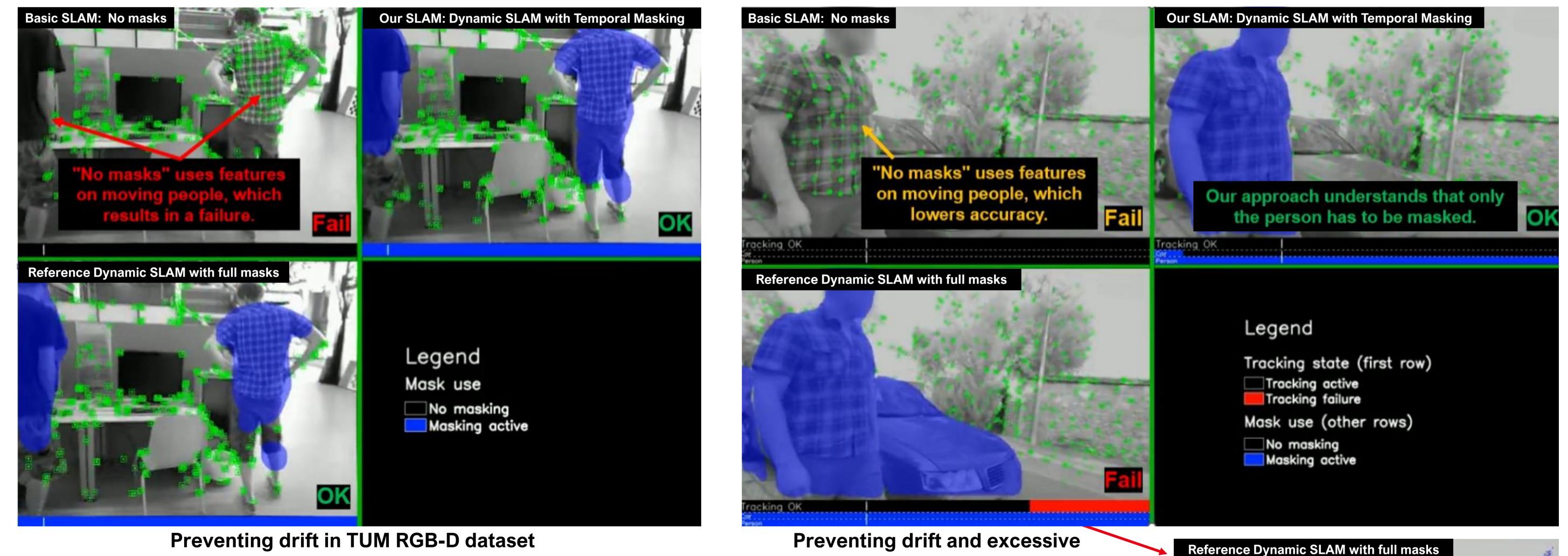
- SLAM : Simultaneous Localization and Mapping
- **Dynamic SLAM**: SLAM in Dynamic environments. Track and match image features that are **not** on dynamic objects.

Video frames (Dynamic SLAM = SLAM +) Camera trajectory dynamic object filtering) + map

Current Dynamic SLAM methods do not mask objects when needed, or mask them when it is not necessary. The problem is when to mask, not what to mask.
The challenge is to mask classes of objects only when appropriate, *i.e.*, when it improves SLAM performance, without priors on motion.



To mask or not to mask, our network shall learn.

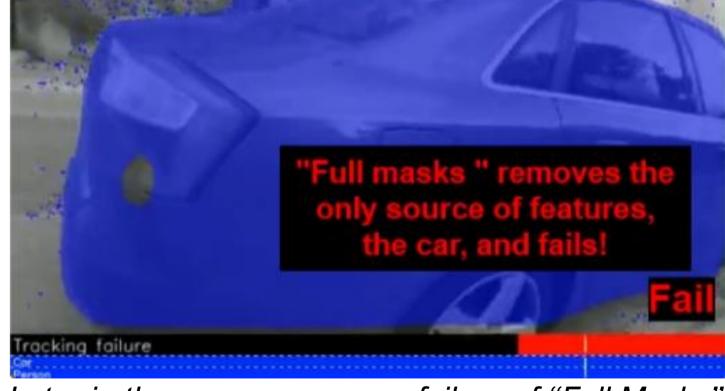


masking in ConsInv-Outdoors dataset

Mode	Dataset	Metric	Baselines		State of the Art				
			No masks	Full masks	Optical flow	DynaSLAM	Slamantic	StaticFusion	Ours
RGB-D	TUM RGB-D	ATE RMSE (m) \downarrow	0.105	0.019	-	0.019	0.028	0.099	0.019
		Tracking Rate ↑	96%	96%	-	69%	96%	96%	96%
		USM ↑	0.55	0.80	-	0.57	0.76	0.54	0.80
Stereo	KITTI	ATE RMSE (m) \downarrow	2.59	2.67	-	2.74	2.70	-	2.51
		Tracking Rate ↑	100%	100%	-	100%	100%	-	100%
		USM ↑	0.80	0.80	-	0.79	0.80	-	0.81
Stereo	ConsInv-Outdoors	ATE RMSE* \downarrow	0.084	0.019	-	0.025	0.032	-	0.024
		Tracking Rate [*] ↑	100%	75%	-	74%	85%	-	88%
		USM ↑	0.61	0.81	-	0.80	0.82	-	0.88
Mono	ConsInv-Indoors-Dynamic	ATE RMSE* \downarrow	0.074	0.003	0.050	0.010	0.032	-	0.014
		Tracking Rate* ↑	<u>94%</u>	74%	74%	70%	84%	-	84%
		USM ↑	0.57	0.71	0.49	0.63	0.68	-	0.75
Mono	ConsInv-Extra-MeetingRoom (domain shift)	ATE RMSE* \downarrow	0.170	0.012	0.077	0.011	0.077	-	0.012
		Tracking Rate* ↑	<u>96%</u>	73%	62%	66%	86%	-	76%
		USM ↑	0.33	0.65	0.34	0.60	0.54	-	0.67
Mono	ConsInv-Extra-LivingRoom (domain shift)	ATE RMSE* \downarrow	0.091	0.012	0.012	0.020	0.016	-	0.013
		Tracking Rate* ↑	96%	82%	62%	71%	84%	-	85%
		USM ↑	0.51	0.73	0.55	0.60	0.69	-	0.74
Mono	ConsInv-Indoors-Static	Prevented false starts	56%	100%	67%	100%	78%	-	100%

Comparison with the state of the art on various datasets in their preferred mode. Our method outperforms the state of the art. Unlike the USM, ATE RMSE (trajectory accuracy) and Tracking Rate (% of tracked frames) may be misleading in difficult scenarios.

References: DynaSLAM: Bescos et al., IEEE RA-L, 2018. | Slamantic: Schorghuber et al., ICCVW Proceedings, 2019. | StaticFusion: Scona et al., ICRA, 2018.



Later in the same sequence: failure of "Full Masks" due to excessive masking.

Conclusion

With the proposed Temporal Masking paradigm, we overcame the current limits of Dynamic SLAM on real data, especially in difficult scenarios.