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Abstract

Self-supervised learning has been widely applied to train high-quality vision trans-
formers (ViT). Unleashing their excellent performance on memory and compute constraint
devices is therefore an important research topic. However, how to distill knowledge from
one self-supervised ViT to another has not yet been explored. Moreover, existing self-
supervised knowledge distillation (SSKD) methods focus on ConvNet architectures and
are suboptimal for ViT knowledge distillation. In this paper, we study knowledge distilla-
tion of self-supervised vision transformers (ViT-SSKD). We show that directly distilling
information from the crucial attention mechanism from teacher to student can significantly
narrow the performance gap between both. In experiments on ImageNet-Subset and
ImageNet-1K, we show that our method AttnDistill outperforms existing self-supervised
knowledge distillation (SSKD) methods and achieves state-of-the-art k-NN accuracy
compared with self-supervised learning (SSL) methods learning from scratch (with the
ViT-S model). We are also the first to apply the tiny ViT-T model for self-supervised
learning. Moreover, AttnDistill is independent of self-supervised learning algorithms, and
it can be adapted to ViT based SSL methods to improve performance in future research.

1 Introduction

Vision transformers [18] have been widely applied in computer vision tasks, including
image classification [55, 62, 70], object recognition [4, 13, 19, 52, 76] and semantic seg-
mentation [12, 50, 64, 73]. ViTs contain a self-attention mechanism [59] that allows for
information exchange between distant patches and consequently leads to a more holistic
understanding of image content. Another important aspect of transformers is that they are
often pretrained in a self-supervised manner, followed by a finetuning stage to adapt to the
downstream task [15, 37]. ViTs suffer from high memory requirements and substandard
optimizability [11, 14, 25, 41, 60, 68], making them unsuitable for applications on memory or
computation constraint devices. Consequently, methods that can reduce the memory footprint
while maintaining the performance of ViTs are in demand.

One transfer learning technique is knowledge distillation [32]. Initial works focussed on
knowledge transfer for networks trained in a supervised manner [7, 57, 66, 69]. Recently, the
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theory was extended to distill knowledge of self-supervised feature representations generated
by large networks [21, 42, 43]. Since these networks do not output a conditional probability
over a label set, but rather a feature representation, alternative distillation techniques needed to
be developed [1, 21]. With the advent of transformers, supervised knowledge distillation for
transformers has recently been investigated [33, 38, 54]. However, methods that can transfer
self-supervised ViTs to smaller variants have not yet been explored.

Therefore, we explore knowledge distillation of self-supervised ViTs. We find that
existing theory designed to transfer knowledge of ConvNets trained in a self-supervised
manner results in a significant performance gap between teacher and student. To address this
problem, we explore attention distillation that focuses on transferring the information present
in the self-attention mechanism. Rather than just communicating the teacher’s conclusion
which is the focus of most traditional knowledge distillation methods, attention distillation
provides more guidance to the student network by identifying the important regions for
understanding the image content. The potential of attention distillation has been explored
for ConvNet [24, 71], however, since for these networks attention is not explicitly computed,
additional computation and attention definition are needed. Since the attention mechanism is
an integral and crucial part of transformers and no additional computation is required, we
argue that attention distillation is a natural extension of the existing distillation theory for
transformer networks.

In this paper, we focus on self-supervised knowledge distillation of self-supervised vision
transformers (ViT-SSKD). First, we propose to use a projector alignment (PA) module to align
the class tokens from teacher and student models. Second, we propose attention guidance (AG)
with the Kullback—Leibler divergence to guide the student to obtain similar attention maps as
the teacher model to further enhance the distillation. With these two modules, we can obtain
state-of-the-art performance compared with self-supervised algorithms. Furthermore, we are
the first to successfully train a small ViT-T model based on self-supervised learning (SSL) with
knowledge distillation. More importantly, there might be more complex and outperforming
SSL pretrained models in the future. In that case our method can be applied directly to obtain
a smaller model while keeping competitive performance. Our main contributions are:

* We are the first to study the important ViT-SSKD problem allowing to transfer knowl-
edge to small transformers in a self-supervised fashion.

* We propose an attention distillation loss for improved guidance of the student during
knowledge distillation. Our method, AttnDistill, significantly reduces the gap between
teacher and student models.

* We are the first to train a self-supervised ViT-T model. It obtains a performance almost
(-0.3%) at par with the supervised ViT-T model.

2 Related work

Self-supervised learning. SSL [8, 9, 16, 23, 26, 29, 30, 58, 63] automatically derives a
supervisory signal for the training of high-quality feature representations, preventing the need
of large labeled datasets. The common paradigm here is to pretrain on ImageNet [49] and
then evaluated on downstream tasks, on which it has reached excellent performance, closing
the gap with supervised methods. Recent popular SSL methods can be divided into two
streams. Contrastive learning [6, 8, 27, 29] is the most popular stream. Another stream of
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representation learning, named masked image encoding [3, 17, 30, 74], learns representations
from corrupted images. In this paper, we study knowledge distillation for SSL based on both
technical streams. From the aspect of backbone architectures, the previous methods are all
based on ConvNet [5, 8, 26]. Recently, with the appearance of ViT, these are also applied for
SSL (DINO [6], MoCo [10], etc). Compared with ConvNet, the attention-based ViTs suffer
less from an image-specific inductive bias and have a larger potential when training on large
scale datasets. In this paper we focus on the original ViT design, but the method could also be
generalized to Swin Transformer [39] based SSL methods [37, 65].

Knowledge distillation for self-supervised models. Most knowledge distillation [32]
techniques are proposed under the supervised learning scenario [2, 7, 44, 46, 48, 53, 57,69, 71,
72]. Under the SSL settings, CC [43] exploit pseudo labels from clustering teacher embeddings
as distillation signals. Then SEED [21] and CompRess [ 1] maintain memory banks to store a
huge number of samples to calculate instance-level similarity score distributions for aligning
the teacher and student models. SimReg [42] has similar projector architecture as our method,
where they use the projector to align the teacher and student features. However, in some
cases when the student ViT architectures become quite different from the teacher model, only
projector regression is not sufficient to transfer knowledge from the teacher to the student
model. Reg [67] is specified for metric learning, which could also be applied to self-supervised
representation distillation. Recently, KDEP [31] propose the power temperature scaling to
distill representation from a supervised teacher model.

Except for these examples in computer vision, there are several distillation attempts in
NLP [20, 34, 51, 61]. However, these methods are limited to the case that teacher-student
models share similar architectures. Also, Pelosin et al. [45] apply attention distillation between
similar transformer architectures for continual learning. Our proposal is a more generalizable
framework and allows for attention distillation between different ViT architectures.

3 Methodology

3.1 Preliminaries

Vision Transformers Architecture. Here we consider the ViT proposed in [18] but the
theory is general and can be extended to other transformer architectures. The ViT consists of a
patch embedding part, where the transformer encoder is a stack of L multi-head self-attention
blocks (MH-SAB). In each MH-SAB, there are two parts: a multi-head self-attention module
(MSA) and a fully connected feedforward module (MLP). Each self-attention module has
H heads. We will further use d as the output dimension for each head and N as the number
of patches. Also considering the class token, we can denote the output of the /th MH-SAB
aszl € RWVHDx(@H) 1 ¢ [11]. 20 is the encoded patch embedding of image x (i.e., from z!
to Z?V) and the initial class token (i.e., z8). For the hth head in the self-attention module,
learnable parameters Wé’h, WIZ(’h7 Wé"h implemented as FC layers, map one slice of the input
tokens z/~'" into the queries, keys and values (Q"", K/ Vi € RIV+DX()) We obtain the
attention map with Eq. 1, where A" € RV+DX(V+1) "and the output of this head is obtained
by Eq. 2. Combining the multiple head outputs, we obtain the final output of this multi-head
self-attention layer (see Eq. 3). Finally, with the MLP and layer normalization (LN), the
output tokens produced by the /th MH-SAB are given by Eq. 4. We have shown the process
of the last MH-SAB from both the teacher and student ViT separately in Fig. 1 (the design is
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Figure 1: AttnDistill for ViIT-SSKD on the last block of the ViT. It is composed of the projector
alignment loss £, and attention guidance loss £,. The class tokens are taken from the last
layer of the teacher and student ViT. We only consider the attention vectors that are formed
by the interaction of the class token query with all keys for distillation.

inspired from [22].) which includes the key components in our approach.

A = Softmax(Q"" - (K" /\/d) (1)
bl — pLh b @)
yl = concat(yl’1 ,yl’z, ...,yl7H) 3)
7/ = MLP (LN(yl+zl—1))+z"1. @)

3.2 AttnDistill: Attention distillation

An outline of AttnDistill is given in Fig. 1. It can be divided into two parts: projector alignment
(PA) and attention guidance (AG). For our distillation, we do not need to generate multiple
views, since we focus on distilling the knowledge of the teacher. So other than contrastive-
based SSL methods [6, 74, 75], in this phase we do not rely on multi-crop augmentations.
Thus, we have less computation costs and the effective epoch is equal to the training epoch.
Projector alignment (PA). Suppose we have a teacher-student pair, each with a ViT architec-
ture named V; and V;. In self-supervised knowledge distillation, our aim is to distill knowledge
from the teacher to the student model in a SSL way while maintaining its transferability. In
most cases, we expect a smaller student model compared to the teacher. The parameter size is
highly dependent on the feature dimension in the ViT. Thus, V; and V typically have different
feature dimensions. Therefore, we introduce a linear mapping projector P to map the student
to the teacher feature space for alignment. And since in ViT, the class token embedding
E° = zé is the most representative embedding for a classification decision, in AttnDistill, we
only map the class token from the last layer for aligning the teacher and student model with a
MSE loss to communicate with the final output from the teacher:

Lo = [[Ef —P(ES) |2 )
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Figure 2: Attention guidance between varying transformer architectures.
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where ‘s/t’ subscripts represent ‘student/teacher’. In our ablation study, we also explored the
influence of aligning the image patch embeddings z-,i € [1,N] with the linear mapping P.
Attention guidance (AG). However, aligning the class tokens can only tell the student model
about "what" is in the image. More guidance from the teacher explaining "why" it reached
this conclusion could be helpful. This extra guidance can be extracted from the multi-head
self-attention (MSA) mechanism in ViTs. The MSA module pays attention to the decisive
and informative parts in the image. Actually, we can observe that distillation with other
methods will lead to attention drift where the student attention differs from the teacher (see
the attention maps in Fig. 3.)

For a ViT, each A"" given by layer [ head & is an attention map from all tokens to all tokens.
And since Aéj?, J € [0,N] (‘0" represents the first row of the attention map AL ) contains the
attention probabilities for the class token, it represents the importance of each token for the
classification prediction of the image. By denoting A = A} LAl = Ag h, a; A{;j’ we propose
to apply Kullback—Leibler divergence (L) to make the student model pay attention to the
same regions as the teacher model by aligning A; and A,. We also study the performance
with attentions from all layers in our ablation study section. To address knowledge transfer
between ViTs with different designs, several cases need to be addressed. Here, we categorize
them into four cases that might occur and discuss the solution below. The illustration of these
variations are provided in Fig. 2.

(a) The teacher and student models have the same number of heads H = H; = H; and patches
N = N; = N; (see Fig.2 (a)). This is the simplest case, where we align according to:

L= Y KLA7|IAY) (6)

he[l,H)

(b) The teacher and student models have the same number of heads H but a different number
of patches N; and N; (see Fig.2 (b)). In this case, we propose to interpolate (IP, by
default we apply bicubic function [%5] as a smoother interpolation) the teacher model
attention map (a ),,] € [1,N;] into (a ),,] € [1,Ny] (N; =w x h,Ny =w' X i), and then
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()

(d)

4
4.1

normalize (NR) them into 1 — (aﬁ) ¢ by scaling up to have the attentions sum to 1 as in
Eq. 7. Then the attention guidance loss is given by Eq. 8.

(a}); =NR,_ () (IP((a}),)) ™
Lo= Y KL((AM;]|Al ®)
he(1,H|

The teacher and student models have the same number of patches N but a different number
of heads H (see Fig.2 (c)). Here we merge the attentions from all heads for distillation.
We have considered several aggregation functions, including mean, maximum and soft-
maximum. We found that using the /og summation to aggregate the attention probabilities
for both teacher and student models (see Eq. 9 and Eq. 10) leads to slightly superior
results compared to max-based fusion. Then the attention guidance loss L, is as Eq. 11.

1 1
aj =5 ) log(a?) = ?-log( I1 a?) 9
he(1,H] he(1,H]
A =Softmax([ag,ay,...,an]) (10)
Ly =KL(A||As) (11)

This aggregation could effectively highlight the maximum probabilities from the atten-
tion maps of the H heads, as can be seen from our ablation study.

The teacher and student models have a different number of heads H and patches N. This
case is a combination of the above two, thus we apply interpolation and aggregation
sequentially and then apply distillation.

Finally, the self-supervised loss to update the student model V; is:

L=LA+MA-L, 12)

Experiments

Pre-Training setup

Datasets. In our experiments, ImageNet-Subset [49] is used for ablation study and to
compare with other self-supervised knowledge distillation methods. This dataset contains

100

classes and ~130k images in high resolution (resized to 224 x224) [47]. For comparison

with SSL methods, we employ the ImageNet-1K dataset [49].

Architecture. For the Teacher-Student pairs, we focus on knowledge distillation from a
larger ViT teacher model to a smaller ViT student model. Due to the high computation
demands of ViT, we select Teacher-Student pairs as below:

* OnImageNet-1K we select the following three pairs (Teacher — Student): (a) Mugs(ViT-
S/16) — ViT-T/16; (b) Mugs(ViT-B/16) — ViT-S/16; (¢) DINO(ViT-S/8) — ViT-S/16;

* On ImageNet-Subset, we fix the teacher model as MAE(ViT-S/16) with 12-Layer,
6-Head, 16-Patch and vary the design of the student model in the ablation study.
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Teacher
- (MAE-ViT-S, 12-Layer, 6-Head, 384-dim, 16-Patch)
Teacher model Method Student Arch. Par.(M) Train Epo. Effect Epo. k-NN LP.
AGGR head 1 head 2
X Supervised  ViT-T/16 5.7 - - 722 722
SWAV (RN-50)  CRD RN-18 11 240 240 447 582
SWAV (RN-50)  CC RN-18 11 100 100 51.0 608
SWAV (RN-50)  Reg RN-18 11 100 100 47.6 60.6 head3  headd  head5  head6
SwAV (RN-50)  CompRess-2q RN-18 11 130 130 53.7 624
SwAV (RN-50) CompRess-1q RN-18 11 130 130 56.0 65.6
SWAV (RN-50)  SimReg RN-18 11 130 130 593 658
SWAV (RN-50x2) SEED RN-18 11 200 200 553 63.0
SWAV (RN-50x2) SEED EffNet-B1 7.8 200 200 60.3 68.0 Student
SWAV (RN-50x2) SEED EffNet-BO 53 200 200 574 676 (ViT-T, 8-Layer, 3-Head, 192-dim, 32-Patch)
SwWAV (RN-50x2) SEED MbNet-v3 5.5 200 200 559 682 AGGR  head1  head2 head3
Mugs (ViT-S/16) ~ AtnDistill ~ VIT-T/16 5.7 500 500 714 719 o R r
X Supervised  ViT-S/16 2 . E 9.8 79.8 b I
X SimCLR ViT-8/16 22 300 600 - 69 pr—
x BYOL VIT-8/16 22 300 600 -
X SWAV VIT-8/16 22 800 2400 663 73.5
X DINO ViT-8/16 22 800 3200 745 77.0
X iBOT VIT-8/16 22 800 3200 752 779 oo
X MUGS VIT-S/16 22 800 3200 756 789 . ol
SWAV (RN-50x2) SEED RN-34 21 200 200 582 65.7 S'MR“g..--
SWAV (RN-50x2) SEED RN-50 24 200 200 59.0 743
SimCLR (RN-50x4) CompRess-1q RN-50 24 130 130 633 719 KL = 0045
SimCLR (RN-50x4) CompRess-2q RN-50 24 130 130 63.0 71.0
SimCLR (RN-50x4) CC RN-50 24 100 100 556 689 cc
SimCLR (RN-50x4) SimReg RN-50 24 130 130 60.3 742
Mugs (ViT-B/16) ~ AtnDistill ~ ViT-S/16 22 800 800 76.8 78.6 K =008
DINO (ViT-S/8)  AunDistill  ViT-S/16 22 800 800 774 788
Teacher Models statistics Reg -.-.
Mugs (ViT-S/16) - - 22 800 3200 756 789
DINO (ViT-S/8) - - 22 800 3200 783 79.7 KL= 0043
Mugs (ViT-B/16) - - 85 400 1600 78.0 80.6 }
SWAV (RN-50) - - 24 800 2400 648 756  OQURs '
SWAV (RN-50x2) - - 94 800 2400 - 713
SimCLR (RN-50x4) - - 375 1000 2000  64.5 75.6 KL=002

Table 1: Comparison with state-of-the-art SSL methods Figure 3: For the teacher model,
with k-NN and linear probing (LP.) on ImageNet-1K. "Ef- we show the original image,
fect Epo." is the effective pretraining epochs computed by the aggregated attention map
multiplying number of views processed by the models fol- (AGGR) and the attention maps
lowing iBOT [74]. for each head. The KL distances

to the teacher AGGR are shown.

Moreover, since MAE/MoCo-v3 and DINO/iBOT/Mugs are following different position
embedding strategies (fixed vs. learnable), our teacher-student pairing setups can show the
effectiveness of AttnDistill for these two kind of position encodings.

Implementation details. We train our AttnDistill with the AdamW [40] optimizer. The
learning rate is linearly ramped up during the first 40 epochs to the base learning rate
Ir = (1.5¢ — 4) x batchsize/256. After the warming up epochs, we decay it with a cosine
schedule till 800 epochs (except the distillation from Mugs(ViT-S/16) to ViT-T/16, where we
train for 500 epochs because of performance saturation). By default, we set T = 10.0 and
A = 0.1, the projector P is a 4-layer linear mapping. For the evaluations of the student model,
we found it is optimal to perform with the features before the P. For the experiments on
ImageNet-Subset, we fix the teacher model as a ViT-S/16 pre-trained with MAE [30] method
with 3200 epochs. More details are in our supplementary materials.
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4.2 Comparison with state-of-the-art

Comparison with SSKD methods on ViT. As shown in Table 2, we compare several
methods to distill a MAE(ViT-S/16) teacher to a ViT-T student on ImageNet-Subset. Next
to the common ViT-T architecture (with 12-layers, 6-heads, 16-patches), we also consider a
harder variant (with 8-layers, 3-heads, 32-patches) as the student model. AttnDistill clearly
outperforms them all in both cases. The margin is larger for the harder setup. This also
indicates the importance of the attention distillation guidance. A comparison of the attention
maps from the 8-layer 3-head 32-patch student case is shown in Fig. 3.

Comparison with SSL. methods with linear probing, k-NN and finetuning accuracies.
For linear probing and k-NN evaluation on ImageNet-1K, we follow the commonly used
setting in DINO [6] and iBOT [74]. The comparison is shown in Table 1. We draw the
following conclusions:

» Based on ViT-T/16 distilled from Mugs(ViT-S/16), our method AttnDistill gets state-of-the-
art k.-NN and Linear probing performance compared with previous knowledge distillation
methods based on ConvNet. AttnDistill (ViT-T/16) is with only 5.7M parameters but
outperforms the previous methods by a large margin and gets quite close to the supervised
ViT-T/16 learning from scratch. In this case, we only train the student model for 500 epochs
since we have observed marginal improvement on linear probing after that.

* Based on ViT-S/16 distilled from DINO(ViT-S/8), our method AttnDistill gets state-of-
the-art in k-NN and the second in linear probing. This distillation decreases the ViT
computational demand since there are 75% less patches in ViT-S/16 than ViT-S/8. Then,
based on ViT-S/16 distilled from Mugs(ViT-B/16), AttnDistill gets the second in k-NN and
the third in linear probing evaluations. In this case, the model size is decreased by 75%.

Moreover, we could further observe the advantage of ViT in k-NN evaluations, which
means the extracted features from self-supervised pretrained ViT are more beneficial without
learning an extra classifier as in linear probing evaluations. The accuracy curves during
training are shown in Fig. 4.

For the finetuning comparison on ImageNet-1K shown in Table 3, we compared with

existing methods working on ViT-T and ViT-S. AttnDistill (ViT/T) and AttnDistill (ViT/S) are
distilled from Mugs (ViT-B) and Mugs (ViT-S) respectively. In both cases, AttnDistill works
better than supervised learning methods and just marginally worse than the state-of-the-art
with ViT-S. In conclusion, whereas AttnDistill is state-of-the-art for k-NN evaluation (Table 1),
this is not the case when evaluating by means of finetuning.
Comparison with SSL methods on downstream tasks. For semi-supervised learning,
results with SSL methods based on ViT-S/16 are shown in Table 4. In this setting, first,
models are trained self-supervised on all ImageNet-1K data. Next labels for a small fraction
of data (1% or 10%) are used to perform fine-tuning, linear probing or k-NN classification.
Under all three settings with only 1% of the data, we can observe a considerable advantage of
AttnDistill with a 3.9%/2.6%/5.8% improvement compared with Mugs(ViT-S/16). With 10%
data, the improvement is less but still notable as 0.4%/2.7%/3.1%.

We also evaluate AttnDistill (ViT-T) for transfer learning. We compare with supervised
ViT models, since there are no papers using ViT-T for SSL. Results are summarized in Table 5)
for several small datasets. AttnDistill gets a 2.3% improvement compared with the previous
best supervised learning method CCT-7/3x1 [28]. Next, we consider transfer learning of
AttnDistill (ViT-S) in Table 6. Here we compare with previous SSL methods, we are only
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FT LP kNN
Method Top-l  Top5 Topl  Top-5 Method Arch.(M) Effect Epo. FT Acc. Method Arch 0t 0% 1% 10% 1% 10%
i\‘j}i?“/‘\ i 12-L, 6-H, 16-P 8-L, 3-H, 32-P Supervised learning SimCLR RN50 57.9 68.1 -
1 Arch - VIiT-T/16 - 722 BYOL RNS0 532 688 -
Teacher - VIT-S/16 - 79.8 SwAV RN50 539 702 -
MAE-S/16 04 936 14 936 DeiT VIT-S/16 ) 813 SIMCLR+SD RN50 600 705 - - - -
SEED [21] 77 907 668 884 DeiT-I [56]  ViT-8/16 - 814 DINO VIT-S/16 60.3 74.3 39.1 703 612 69.0
Gowiern T WS WT wd VRS ws SO WIS o o s oo
Koup! PR o MKD[38]  ViT-$/16 - 82.1 AunDistill VITS/I6 70.7 772 667 749 694 737
KDEP [31] 66.7 87.8 57.8 824 ttnDisti 1 . g 3 8 & 3
Reg [67] 762 925 696 890 Self-Supervised learning
SimReg [42] 778 934 686 888 MoCo v3 VIT-S/16 600 81.4
AttnDistill 793 94.1 738 91.7 DINO ViT-8/16 3200 82.0 . 5 :
BT vitste 100 a9 Table 4:  Semi-supervised
Mugs VIiT-8/16 3200 82.6 : _
s il oo a0 52¢&  learning on ImageNet1K. At

Table 2: Compare with AtnDistill  ViT-S/16 800 81.6 tnDistill (ViT-S) is distilled
SSKD methods on ImageNet Table 3: Finetuning compari- g b o oo cpar o oq01 Mugs

Subset with top-1/top-5 (LP.) son on ImageNetlK. (VIT-B/16) for 800 epochs.
Method Par.(M) CIFAR100 CIFARI10 Method Par. (M) CIFAR100 CIFAR10 Flowers Cars
Supervised learning Supervised + Transfer learning
SL-CaiT [36] 9.2 80.3 95.8 - 22 89.5 99.0 98.2 92.1
SL-T2T [36] 71 774 95.6 DeiT-III [56] 22 90.6 98.9 9.4 899
SL-Swin [36] 10.2 80.0 95.9 Self-Supervised + Transfer learning
CVT-7/4 [28] 3.7 73.0 92.4 BEIiT 22 87.4 98.6 964  92.1
CCT-7/3x1 [28] 3.8 82.7 98.0 DINO 22 90.5 99 985 930

iBOT 22 90.7 99.1 98.6  94.0
Self-Supervised + Transfer learning Mugs 22 91.8 99.2 988 939
AttnDistill (ViT-T) 5.7 85.0 98.1 AttnDistill (ViT-S) 22 91.6 99.1 98.6 93.8

Table 5: Transfer learning comparison on Table 6: Compared with SSL methods on four
CIFAR10/CIFAR100. AttnDistill (ViT-T) small datasets. AttnDistill (ViT-S) is distilled
is distilled from Mugs(ViT-S/16). from the teacher Mugs (ViT-B/16).

marginally worse than the state-of-the-art and much better than the supervised distillation
method DEIT [54].

4.3

Ablation study

To prove the generalizability of AttnDistill, we perform an ablation study on ImageNet-Subset

with
ablat

(a)

(b)

a fixed MAE(ViT-S/16) teacher and vary the architecture of the student model. Extended
ion studies are in the supplementary. In Fig. 5, our ablation study contains three parts:

The architecture of ViT (in Fig. 5-(a)) : To verify the effectiveness of AttnDistill
for various architectures of ViT, we modify the number of heads, patch sizes and the
number of block layers. In all cases, AttnDistill significantly improves the PA baseline
and closes the gap with the teacher performance. Especially, for the smaller student
architectures and those with fewer tokens, attention distillation is shown to be crucial
leading to improvements of over 5%.

The various aggregation functions (in Fig. 5-(b)) : Here we fix the design of the
student model and vary the strategy to compute the attention guidance loss. To verify
the superiority of the used log summation in Eq. 9, we replace it with MEAN/MIN/MAX
strategies to aggregate attention maps from different heads. However, they are all
suboptimal.

(c) Alternative self-supervised losses (in Fig. 5-(¢)) : A recent work for distillation of self-

supervised representations of ConvNet is CompRess [1]. Here, we apply the knowledge
distillation loss from CompRess [1] to our PA module, we can clearly observe that this
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Teacher: Mugs-$/16 __ Student: ViTT/16 Teacher: Mugs-B/16 __Student: ViT-S/16 Teacher: DINO-S/8 __Student: ViT:S/16

100 200 300 400 500 100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800
Epochs Epochs Epochs

Figure 4: More results of AttnDistill with different training epochs on ImageNet-1K.

Ablation study over student V1TT designs Ablation study over aggregation variants Ablation study over alternative losses
80 79.4 80 79.4 80 79.4 79.3
78 7 7
76.9
76 7 7
74 74 735 238 74
= 72 _ ZL9 724
72 g g 706 g %
w 8 w E ERE N wl 8 £
E 3 = £ |E E &
66° Teacher Student. ° Teacher Student (ViT-T: 8-L, 3-H, 32-P) Teacher Student (ViT-T: 12-L, 6-H, 16-P)
(a) ViT architectures (b) aggregation functions (c) alternative losses

Figure 5: Ablation study for ViT architectures, aggregation functions and alternative losses.

KD loss is an obstacle in ViT distillation since when combined with our PA module it
leads to a performance drop. Except distilling the attention maps from the last layer, we
also experiment the distillation over attention maps from all layers. This is 0.6% lower
than AttnDistill based on only the last layer. Finally, we also align the patch tokens
with our PA module. This is 2.4% worse than without the patch token alignment, thus
aligning patch tokens is not necessary.

5 Conclusion

In this paper, we explored the ViT-based self-supervised knowledge distillation problem.
Observing that the previous SSKD methods focussed on ConvNet do not work well on ViT,
we proposed ArtnDistill to distill the knowledge from a pretrained teacher model to its student
model. The experiments clearly show that AttnDistill outperforms other SSKD methods.
Furthermore, our distilled ViT-S gets state-of-the-art in k-NN accuracy and is second in
linear probing compared with SSL methods. Also, our method AttnDistill is especially
advantageous in semi-supervised learning evaluation and competitive in transfer learning
evaluation. To prove the effectiveness of AttnDistill, we also implement various ablation
studies on ImageNet-Subset. For future work, we are interested to explore AttnDistill for
knowledge distillation between ConvNets and ViT.

Limitations. A drawback of the attention mechanism is that it is tailored for transformer usage
and requires additional computation when applied to ConvNets (namely the computation of
the attention maps). A further limitation is that the theory only applies to a single teacher-
student pair. In case of multiple teacher models, further thought has to be given on how the
multiple attention maps can be meaningfully communicated with the student.
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