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1 Table 2 visualization
A graphical visualization for Table 2 in the main paper is shown in Fig. 6, where you can
easily observe the performance difference between each teacher and student pair. We can
also observe that the performance drop from linear probing to k-NN is effectively reduced by
AttnDistill.

2 Networks configurations
In this paper, our networks configurations mainly refer to the ViT designs in DINO [1],
DEiT [9], Mugs [12] and iBOT [11], where the number of heads H and position embedding
(PE) strategy (learnable PE and ViT-S with 6 head) are different from MoCo v3 [3] (fixed
sin-cos PE and ViT-S with 12 head). The detailed networks configurations are shown in
Table 7.

3 Additional Implementations

3.1 Pre-Training recipe
A clear pre-training recipe is shown in Table 8. We mainly refer to the training recipe from
MAE [5].

3.2 More details for evaluations
k-NN, Linear Probing and finetuning on ImageNet-1K. To evaluate the quality of pre-
trained features, we either use a k-nearest neighbor (k-NN) classifier or a linear classifier
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Figure 6: Visualization of Table 2 results, providing both the linear probing and k-NN
accuracies for multiple methods. Note that AttnDistill significantly reduces the gap with the
teacher model.
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Networks configurations for experiments on ImageNet-1K

PE model layers dim heads patch size #tokens #params

Teacher learnable
Mugs (ViT-S/16) 12 384 6 16 197 22M
DINO (ViT-S/8) 12 384 6 8 785 22M
Mugs (ViT-B/16) 12 768 12 16 197 85M

Student learnable AttnDistill (ViT-T/16) 12 192 3 16 197 5.7M
AttnDistill (ViT-S/16) 12 384 6 16 197 22M

Networks configurations for experiments on ImageNet-Subset

Teacher sin-cos MAE (ViT-S/16) 12 384 6 16 197 22M

Student sin-cos

AttnDistill (ViT-T) 12 192 6 16 197 5.7M
AttnDistill (ViT-T) 12 192 3 16 197 5.7M
AttnDistill (ViT-T) 12 192 3 32 65 5.7M
AttnDistill (ViT-T) 8 192 3 16 197 3.8M
AttnDistill (ViT-T) 8 192 3 32 65 3.8M

Table 7: Networks configuration. “layers” is the number of Transformer blocks, “dim” is
channel dimension and “heads” is the number of heads in multi-head attention. “# tokens” is
the length of the token sequence, “# params” is the total number of parameters. “PE” is the
position embedding strategy. We consider 224×224 resolution inputs.

config value

optimizer AdamW [8]
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1,β2 = 0.9,0.95 [2]
batch size 4096
learning rate schedule cosine decay [7]
warmup epochs 40

training epochs
500 (ViT-T/16 ImageNet-1K)
800 (ViT-S/16 ImageNet-1K)

3200 (ViT-T/16 ImageNet-Subset)
augmentation RandomResizedCrop

Table 8: Pre-Training settings for ViTs distillation on ImageNet-1K and ImageNet-Subset.

config value

optimizer LARS [10]
base learning rate 0.1

weight decay 0
optimizer momentum 0.9

batch size 16384
learning rate schedule cosine decay

warmup epochs 10
training epochs 90
augmentation RandomResizedCrop

Table 9: Linear probing setting on ImageNet-Subset for self-supervised knowledge distilla-
tion with a MAE(ViT-S/16) teacher.
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on the frozen representation. We follow the evaluation protocols in DINO [1], iBOT [11],
Mugs [12]. For k-NN evaluation, we sweep over different numbers of nearest neighbors. For
linear probing and finetuning evaluations, we sweep over different learning rates.

Semi-supervised learning on ImageNet-1K. In this setting, first, models are trained self-
supervised on all ImageNet-1K data. Next, labels for a small fraction of data (1% or 10%) are
used to perform fine-tuning, linear probing or k-NN classification. This is also an extension
to the semi-supervised learning evaluations in DINO, iBOT and Mugs papers. For k-NN
evaluation, we sweep over different numbers of nearest neighbors. For linear evaluation, we
sweep over different learning rates. For fine-tuning evaluation, we fine-tune the pre-trained
backbone for 1000 epochs with learning rate set to 5e-6.

Transfer learning. We pretrain the model on ImageNet-1K, and then fine-tune the pre-
trained backbone on various datasets with the same protocols and optimization settings as
in DINO, iBOT, and Mugs. For both ViT-T and ViT-S, we use AdamW optimizer with a
minibatch of 1024, we fine-tune the pretrained model 1000 epochs by sweeping the learning
rates. The weight decay is fixed to be 0.05.

Linear probing evaluation on ImageNet-Subset Since on ImageNet-Subset we consider
the MAE as the teacher, thus in linear probing, we also follow the evaluation protocols from
MAE [5] as shown in Table 9.

4 MAE pretraining on ImageNet-Subset
The linear probing curves of MAE [5] pre-training on ImageNet-Subset is shown in Fig. 7 for
further references (from 1200 epochs to 3200 epochs). We can observe that both ViT-S(12-
layers, 6-heads, 16-patches, 384-dim) and ViT-T(12-layers, 6-heads, 16-patches, 192-dim)
both are saturated at 3200 epochs.

5 Additional ablation studies.
To prove the generalizability of AttnDistill, we perform the ablation study on ImageNet-
Subset with a fixed MAE(ViT-S/16) teacher and vary the architecture of the student model.
Apart from the ablation studies shown in Fig.5 in the main paper, here we extend the ablation
studies and also display all the numbers included in Fig.5. As can be seen from Table 10,
our ablation study can be roughly divided into six parts. The beginning three parts (a)-(c)
are corresponding to the Fig.5(a)-(c). Except that, we further show our ablation study on the
following three aspects:

• The design of the linear mapping P: In Table 10-(d), we vary the number of P layers in
{1,2,4,8} and evaluate the output features from each layer. As can be seen that, the output
feature before P (indicated by a 0 in column Evaluation P layer) is always a good choice
for all considered layer-numbers variations. Also, for the number of layers 4 is a better
choice.

• The hyperparameter of AttnDistill: In Table 10-(e) and Fig. 8, we ablate the λ and T . The
optimal choice is λ = 0.1,T = 10.0.
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Figure 7: MAE pretrained on ImageNet-Subset with ViT-S and ViT-T models.
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Figure 8: Ablation study over T and λ .

• Other ablation studies: here we fix the design of the student model and vary the strategy
to compute the attention distillation loss. We imitate the ATS [4] to compute the token
scores with the norm of Value vectors in the MSA module of ViTs. We also replace the KL
divergence in La with MSE loss. Neither of them could work better than our solution.
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Dataset: ImageNet-Subset
Teacher: ViT-S (12-Layer, 6-Head, 16-Patch, 3200 epo., 384 dim); Top-1 LP.: 79.4; Top-5 LP.: 93.6
Student: ViT-T (12-Layer, 6-Head, 16-Patch, 3200 epo., 192 dim); Top-1 LP.: 63.7; Top-5 LP.: 86.2
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(a)

Heads

12 3 16 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 0 77.8 93.6
12 3 16 ✓ ✗ ✗ 4 last ✓ ✓ ✗ 0.1 10.0 0 78.9 93.8
12 6 16 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 0 77.8 93.3
12 6 16 ✓ ✗ ✗ 4 last ✓ ✓ ✗ 0.1 10.0 0 78.9 93.9
12 6 16 ✓ ✗ ✗ 4 last ✓ ✗ ✗ 0.1 - 0 79.3 94.1

Patch size

12 6 28 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 0 73.3 91.1
12 6 28 ✓ ✗ ✗ 4 last ✓ ✗ ✓ 0.1 - 0 77.3 93.1
12 6 32 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 0 73.1 91.0
12 6 32 ✓ ✗ ✗ 4 last ✓ ✗ ✓ 0.1 - 0 77.2 92.8

Layers 8 6 16 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 0 77.7 92.8
8 6 16 ✓ ✗ ✗ 4 last ✓ ✗ ✗ 0.1 - 0 79.1 94.0
8 3 32 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 0 68.6 88.8
8 3 32 ✓ ✗ ✗ 4 last ✓ ✓ ✓ 0.1 10.0 0 73.8 91.7

(b)

PA 8 3 32 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 0 68.6 88.8
AttnDistill 8 3 32 ✓ ✗ ✗ 4 last ✓ ✓ ✓ 0.1 10.0 0 73.8 91.7

MAX 8 3 32 ✓ ✗ ✗ 4 last ✓ ✓ ✓ 0.1 10.0 0 73.5 91.6
MEAN 8 3 32 ✓ ✗ ✗ 4 last ✓ ✓ ✓ 0.1 10.0 0 70.6 90.0

MIN 8 3 32 ✓ ✗ ✗ 4 last ✓ ✓ ✓ 0.1 10.0 0 71.9 90.7

(c)

KD 12 6 16 ✓ ✗ ✓ 4 - ✗ ✗ ✗ - - 0 75.0 92.5
12 6 16 ✗ ✗ ✓ 4 - ✗ ✗ ✗ - - 0 71.7 90.7

Patch 12 6 16 ✗ ✓ ✗ 4 - ✗ ✗ ✗ - - 0 73.6 91.4
12 6 16 ✓ ✓ ✗ 4 - ✗ ✗ ✗ - - 0 76.9 93.4

Attn Layer 12 6 16 ✓ ✗ ✗ 4 all ✓ ✗ ✗ 0.1 - 0 78.7 93.7
12 6 16 ✓ ✗ ✗ 4 last ✓ ✗ ✗ 0.1 - 0 79.3 94.1

(d)

M
L

P
la

ye
rs

an
d

E
va

ll
ay

er

12 6 16 ✓ ✗ ✗ 8 - ✗ ✗ ✗ - - 0 76.2 92.4
12 6 16 ✓ ✗ ✗ 1 - ✗ ✗ ✗ - - 0 76.3 92.5
12 6 16 ✓ ✗ ✗ 1 - ✗ ✗ ✗ - - 1 76.2 92.4
12 6 16 ✓ ✗ ✗ 2 - ✗ ✗ ✗ - - 0 76.4 93.2
12 6 16 ✓ ✗ ✗ 2 - ✗ ✗ ✗ - - 1 76.4 93.1
12 6 16 ✓ ✗ ✗ 2 - ✗ ✗ ✗ - - 2 76.5 93.1
12 6 16 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 0 77.8 93.3
12 6 16 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 1 77.8 93.3
12 6 16 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 2 77.2 93.2
12 6 16 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 3 76.6 92.9
12 6 16 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 4 76.2 92.8

(e)

Attn λ

12 6 16 ✓ ✗ ✗ 4 last ✓ ✗ ✗ 0.005 - 0 78.7 93.7
12 6 16 ✓ ✗ ✗ 4 last ✓ ✗ ✗ 0.1 - 0 79.3 94.1
12 6 16 ✓ ✗ ✗ 4 last ✓ ✗ ✗ 0.3 - 0 79.2 94.0
12 6 16 ✓ ✗ ✗ 4 last ✓ ✗ ✗ 0.5 - 0 79.0 93.8
12 6 16 ✓ ✗ ✗ 4 last ✓ ✗ ✗ 5.0 - 0 78.2 93.6

Attn T
12 3 16 ✓ ✗ ✗ 4 last ✓ ✓ ✗ 0.1 10.0 0 78.9 93.8
12 3 16 ✓ ✗ ✗ 4 last ✓ ✓ ✗ 0.1 5.0 0 77.7 93.6
12 3 16 ✓ ✗ ✗ 4 last ✓ ✓ ✗ 0.1 20.0 0 78.3 93.7

(f)

PA 8 3 32 ✓ ✗ ✗ 4 - ✗ ✗ ✗ - - 0 68.6 88.8
Weight by |VALUE| [4] 8 3 32 ✓ ✗ ✗ 4 last ✓ ✓ ✓ 0.1 10.0 0 70.6 90.5

MSE loss [6] 8 3 32 ✓ ✗ ✗ 4 last ✓ ✓ ✓ 0.1 10.0 0 72.9 90.9
AttnDistill 8 3 32 ✓ ✗ ✗ 4 last ✓ ✓ ✓ 0.1 10.0 0 73.8 91.7

Table 10: Full table for our ablation studies.
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6 More visualization of attention maps
Except the Fig.4 in the main paper, here in Fig. 9 and Fig. 10 we also show more visualization
of the attention maps obtained from various knowledge distillation methods (MAE-ViT-S
→ViT-T) on ImageNet-Subset. More attention visualizations with nearly 1000 images (≈ 10
images per class) are in our supplementary file named "attn_vis.zip" with the same layouts.

IMG AGGR head 1 head 2 head 3 head 4 head 5 head 6
Teacher (MAE-ViT-S, 12-Layer, 6-Head, 384-dim, 16-Patch)

CC

AGGR head 1 head 2 head 3

KDEP

AGGR head 1 head 2 head 3

SEED

Student (ViT-T, 8-Layer, 3-Head, 192-dim, 32-Patch)

Reg

SimReg OURs

Figure 9: Comparison on attention maps for "n02088238_194.jpg". For the teacher model
ViT-S trained with MAE, we show the original image (IMG), the aggregated attention map
(AGGR) with our AttnDistill and the attention maps for each head. For the student model
ViT-T distilled from the teacher model, we show the aggregated attention map and each head
attention map for each method. The KL distances to the teacher aggregated attention maps
are shown under each method.
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IMG AGGR head 1 head 2 head 3 head 4 head 5 head 6
Teacher (MAE-ViT-S, 12-Layer, 6-Head, 384-dim, 16-Patch)

CC

AGGR head 1 head 2 head 3
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Student (ViT-T, 8-Layer, 3-Head, 192-dim, 32-Patch)

Reg
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Figure 10: Comparison on attention maps for "n02106166_45.jpg". For the teacher model
ViT-S trained with MAE, we show the original image (IMG), the aggregated attention map
(AGGR) with our AttnDistill and the attention maps for each head. For the student model
ViT-T distilled from the teacher model, we show the aggregated attention map and each head
attention map for each method. The KL distances to the teacher aggregated attention maps
are shown under each method.
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IMG AGGR head 1 head 2 head 3 head 4 head 5 head 6
Teacher (MAE-ViT-S, 12-Layer, 6-Head, 384-dim, 16-Patch)
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Figure 11: Comparison on attention maps "n04310018_78.jpg". For the teacher model
ViT-S trained with MAE, we show the original image (IMG), the aggregated attention map
(AGGR) with our AttnDistill and the attention maps for each head. For the student model
ViT-T distilled from the teacher model, we show the aggregated attention map and each head
attention map for each method. The KL distances to the teacher aggregated attention maps
are shown under each method.
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