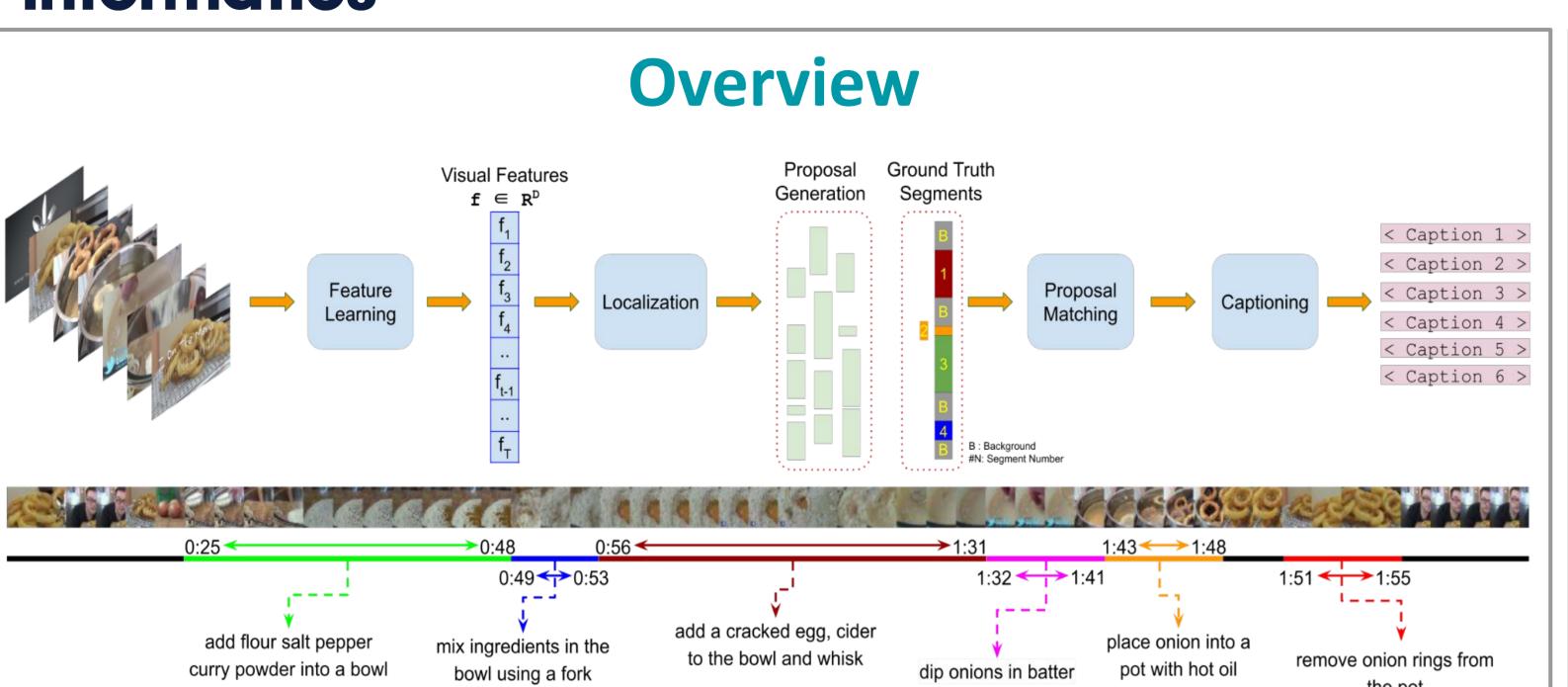


A Closer Look at Temporal Ordering in the Segmentation of Instructional Videos



Anil Batra

Closely related to Dense Video Captioning Task[3]. Datasets: YouCook2 [1] and Tasty [2]

Learning temporal representation of instructional videos.

Temporally identify the key steps and generate textual summary.

Temporal segmentation is critical for generating correct textual summary.

Challenges

Proxy Evaluation Metrics

- ✓ Do not include 1-to-1 mapping between Ground Truth and Predicted segment
- ✓ Recursive search to find the best match with highest overlap
- ✓ Proposal detection metrics are used and overestimate
- 1. Proposal Detection Metric [3, 5]

$$P_{g,\tau} = \{ p \in \mathcal{P} | IoU(g,p) > \tau \}$$

$$G_{p,\tau} = \{ g \in \mathcal{G} | IoU(g,p) > \tau \}$$

$$Precision = \frac{|\bigcup_{g \in \mathcal{G}} P_{g,\tau}|}{|\mathcal{P}|}$$

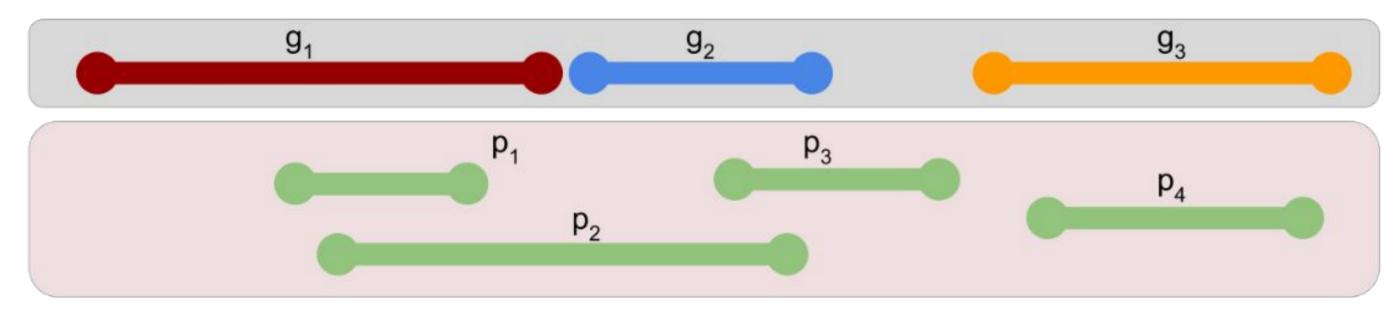
$$Recall = \frac{|\bigcup_{p \in \mathcal{P}} G_{p,\tau}|}{|\mathcal{G}|}$$

2. Recursive Overlap Metric [1]

$$mIoU = \frac{\sum_{g \in \mathcal{G}} max(IoU(g, p) | p \in \mathcal{P})}{|\mathcal{G}|}$$

Example

Task



	p ₁	p ₂	p_3	p ₄
g_1	0.26	0.32	0	0
g_2	0.13	0.49	0.21	0
g_3	0	0	0	0.75

Proposal Metric:
$$Precision_{\tau=0.3} = \frac{|\{p_2, p_4\}|}{4} = 0.5$$
 $Recall_{\tau=0.3} = \frac{|\{g_1, g_2, g_3\}|}{3} = 1.0$ g_2 = [7,9]

Overlap Metric:
$$mIoU = \frac{0.32 + 0.49 + 0.75}{3} = 0.52$$

SODA-D (F1) Score

Frank Keller

Laura Sevilla-Lara

- 1. Optimal Matching using Dynamic Programming
- ✓ Utilize matching as Combinatorial Optimization to maximize the average IoU
- ✓ Incorporate temporal order while matching

Dynamic Programming Matching

Oynamic Programming Matching
$$C_{i,j} = IoU(g_i,p_j)$$
 $S[i][j] = max egin{cases} S[i-1][j] \\ S[i-1][j-1] + C_{i,j} \\ S[i][j-1] \end{cases}$

SODA-D (F1) Score

Shreyank N Gowda

$$Precision = \frac{\sum_{g \in \mathcal{G}} IoU(g, a(p))}{|\mathcal{P}|} \qquad Recall = \frac{\sum_{g \in \mathcal{G}} IoU(g, a(p))}{|\mathcal{G}|}$$

Example

	0.26	0.32	0.32	0.32	D	D	L	L
_	0.26	0.75 —	• 0.75	0.75	Т	D	L	L
	0.26	0.75	0.75	1.5	Т	Т	Т	D
	Dynamic Table				Traceback Table			

Sequential Matching Optimzation

- 1. Hungarian Matching [5]
- ✓ Generate proposal based on Hungarian Matcher NonDifferentiable
- ✓ Temporal structure of segments is **not** incorporated
- 2. SODA Matching (Ours)
- ✓ Differentiable matching algorithm.
- ✓ Plug into training pipeline to improve temporal segmentation performance.

Differentiable SODA Matching

$$C_{i,j} = -IoU(g_i, p_j) S[i][j] = min^{\gamma} \begin{cases} S[i-1][j] \\ S[i-1][j-1] + C_{i,j} \\ S[i][j-1] \end{cases}$$

Example

	$p_1 = [1,9]$	$p_2 = [1,4]$	$p_3 = [4,8]$	
$g_1 = [2,5]$	0.38	0.5	0.17	Hungarian: [(g ₁ , p ₂), (g ₂ , p ₁)]
$g_2 = [7,9]$	0.25	0	0.2	SODA: [(g ₁ , p ₂), (g ₂ , p ₃)]
	<u></u>	Example - 1		Score: 27.99

 $p_1 = [1,4]$ $p_2 = [1,9]$ $p_3 = [4,8]$ 0.17 $g_1 = [2,5]$ 0.38 0.5

> 0.25 Example - 2

Hungarian: $[(g_1, p_1), (g_2, p_2)]$ SODA: $[(g_1, p_1), (g_2, p_2)]$

Score: 30.0

Quantitative Results

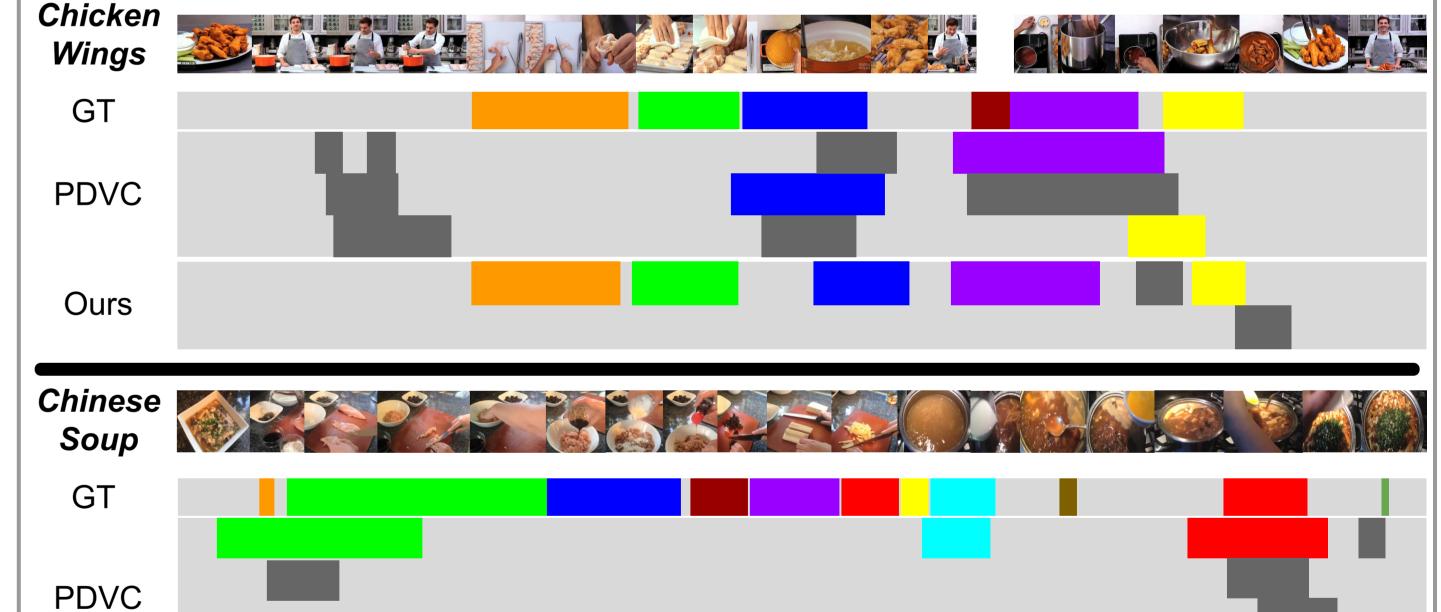
Existing and Proposed Evaluation Metrics Comparison

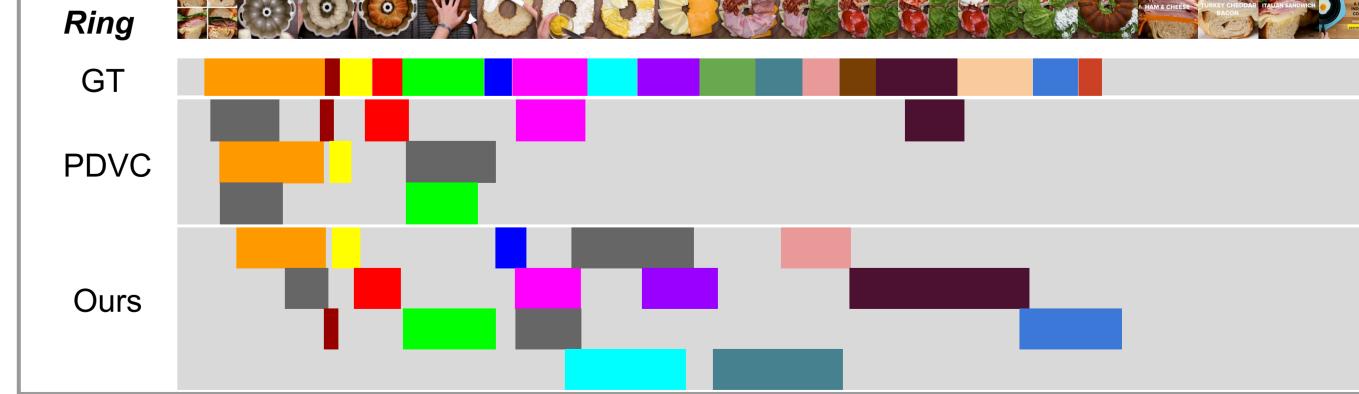
Method	mean-IoU	mean-Jaccard	Precision	Recall	SODA-D (F1)
Uniform (Avg # Segment)	35.18	40.79	29.01	31.67	29.46
Uniform (Avg # Duration)	43.43	61.87	22.5	43.77	28.53
Uniform (GT)	34.18	38.26	30.47	30.47	30.47
ProcNet [1]	32.3	46.32	26.72	30.98	27.89
PDVC [5]	33.54	42.61	27.44	31.39	28.35
Ours	41.38	52.63	36.01	39.67	36.8

Procedure Segmentation and Summarization Comparison

	Method	Video Features	Matcher	YouCook2		Tasty	
				SODA-D	SODA-C [4]	SODA-D	SODA-C [4]
	Uniform (Avg # Segment)	-	-	29.46	-	36.82	-
	Uniform (Avg # Duration)	-	-	28.53	-	39.88	1
	Uniform (GT)	-	-	30.47	-	43.35	1
	ProcNet [1]	RGB + Flow	-	27.89 ± 1.25	-	34.12 ± 1.01	1
	PDVC [5]	R3D	Hungarian	28.35 ± 0.27	4.11 ± 0.05	42.44 ± 0.66	6.58 ± 0.16
	Ours	S3D	Hungarian	33.11 ± 0.28	6.13 ± 0.08	46.57 ± 0.65	9.17 ± 0.19
	Ours	S3D	SODA	36.32 ± 2.19	6.39 ± 0.51	50.84 ± 0.41	9.71 ± 0.18
	Ours	S3D	SoftSODA	36.80 ± 1.90	6.54 ± 0.44	50.37 ± 0.63	9.63 ± 0.21

Qualitative Results





References:

- 1. Luowei Zhou et. al. Towards Automatic Learning of Procedures from Web Instructional Videos, AAAI 2018
- 2. Fadime Sener et. al. Sener, Fadime Zero-Shot Anticipation for Instructional Activities, ICCV 2019
- 3. Ranjay Krishna et. al. Dense-Captioning Events in Videos, ICCV 2017
- 4. Soichiro Fujita et. al. SODA:Story Oriented Dense Video Captioning Evaluation Framework, ECCV 2020
- 5. Teng Wang et. al. PDVC: End-to-End Dense Video Captioning with Parallel Decoding, ICCV 2021

Acknowledgement:

This work was supported in part by the UKRI Centre for Doctoral Training in Natural Language Processing, funded by the UKRI (grant EP/S022481 /1) and the University of Edinburgh, School of Informatics and School of Philosophy, Psychology & Language Sciences.

0.2