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Abstract

Detecting out-of-distribution (OOD) samples plays a key role in open-world and
safety-critical applications such as autonomous systems and healthcare. Recently, self-
supervised representation learning techniques have shown to be effective in improving
OOD detection. However, one major issue with such approaches is the choice of shifting
transformations and pretext tasks which depends on the in-domain distribution. In this
paper, we propose a simple framework that selects optimal shifting transformations and
pretext tasks and modulating their effect on representation learning without requiring any
OOD training samples. In extensive experiments, we show that our simple framework
outperforms state-of-the-art OOD detection models on several image datasets. We also
characterize the criteria for a desirable OOD detector for real-world applications and
demonstrate the efficacy of our proposed technique against state-of-the-art OOD detection
techniques.

1 Introduction
Despite advances in representation learning and their generalization to unseen samples,
learning algorithms are bounded to perform well on source distribution and vulnerable to
out-of-distribution (OOD) or outlier samples. For example, it has been shown that the piece-
wise linear decision boundaries in deep neural network (DNN) with ReLU activation are
prone to OOD samples as they can assign arbitrary high confidence values to samples away
from the training distribution [13]. Recent work on machine learning trustworthiness and
safety have shown that OOD detection plays a key role in open-world and safety-critical
applications such as autonomous systems [26] and healthcare [31]. However, OOD detection
in high dimensional domains like image data is a challenging task and often requires great
computational resource [7].

The recent surge in self-supervised learning techniques shows that learning pretext tasks
can result in better semantic understanding of data by learning invariant representations [6]
and can increase model performance in different setups [8]. Self-supervised learning has also
been shown effective in OOD detection. For example, Golan and El-Yaniv [9] and Hendrycks
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et al. [18] show that simple geometric transformations improve OOD detection performance,
and Tack et al. [37] leverage shifting data transformations and contrastive learning for OOD
detection. However, these works manually design the transformations and pretext tasks.

Inspired by the recent works, we study the impact of representation learning on OOD
detection when training a model on artificially transformed datasets. We observe that training
on a diverse set of dataset transformations jointly, termed as shifting transformation learning
here, further improves the model’s ability to distinguish in-domain samples from outliers.
However, we also empirically observe that the choice of effective data transformations for
OOD detection depends on the in-domain training set. That is to say, the set of transformations
effective for one in-domain dataset may not be effective for another dataset.

To address this problem, we make the following contributions in this paper: (i) We propose
a simple framework for selecting and modulating effects of training set transformations
(shifted views of the in-domain training set) to improve OOD detection. We demonstrate
that the optimally selected transformations result in better representations for both main
classification and OOD detection compared to data augmentation-based approaches. (ii) We
propose an ensemble score for OOD detection that leverages multiple transformations trained
with a shared encoder. In particular, our technique achieves new state-of-the-art results in
OOD detection on multi-class classification by improving averaged area under the receiver
operating characteristics (AUROC) +1.3% for CIFAR-10, +4.37% for CIFAR-100, and
+1.02% for ImageNet-30 datasets. (iii) To the best of our knowledge, this paper is the first to
introduce criteria for ideal OOD detection and to analyze a diverse range of techniques along
with these criteria. Albeit the simplicity, we show that our proposed approach outperforms
the state-of-the-art techniques on robustness and generalization criteria.

2 Related Work

Here, we review OOD detection methods related to this work:

Distance-based Detection: Distance-based methods use different distance measures be-
tween the unknown test sample and source training set in the representation space. These
techniques involve preprocessing or test-time sampling of the source domain distribution to
measure their averaged distance to the novel input sample. The popular distance measures in-
clude Mahalanobis distance [23, 35], cosine similarity [37, 38] and others semantic similarity
metrics [30]. These techniques usually work well with unlabeled data in unsupervised and
one-class classification setups. For example, Ruff et al. [32] present a deep learning one-class
classification approach to minimize the representation hypersphere for source distribution and
calculate the detection score as the distance of the outlier sample to the center of the hyper-
sphere. Recently, Mukhoti et al. [28] proposed using distance measures for model features to
better disentangle model uncertainty from dataset uncertainty. Distance-based methods can
benefit from ensemble measurements over input augmentations [37] or transformations [2],
network layers [23, 34], or source domain sub-distributions [29] to improve detection results.
For instance, Tack et al. [37] present a detection score based on combining representation
norm with cosine similarity between the outlier samples and their nearest training samples for
one-class classification problem. They also show that OOD detection can be improved with
ensembling over random augmentations, which carries a higher computational cost.
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(a) (b)
Figure 1: The t-SNE visualization of the penultimate layer features in a ResNet-18 network
trained on CIFAR-10 using (a) supervised learning with cross-entropy loss and (b) our method
with shifting transformation learning. OOD samples [41] are presented in gray.

Classification-based Detection: These OOD detection techniques avoid costly distance-
based and uncertainty estimation techniques (e.g., Gal and Ghahramani [7]) by seeking
effective representation learning to encode normality together with the main classification
task. Various detection scores have been proposed including maximum softmax probability
[15], maximum logit scores [17], prediction entropy [27], and KL-divergence score [18].
To improve the detection performance, [19, 22] proposed a combination of temperature
scaling and adversarial perturbation of input samples to calibrate the model to increase the
gap between softmax confidence for the inlier and outlier samples. Another line of research
proposed using auxiliary unlabeled and disjoint OOD training set to improve OOD detection
for efficient OOD detection without architectural changes [16, 27].

Recent work on self-supervised learning shows that adopting pretext tasks results in
learning more invariant representations and better semantic understanding of data [6] and
which significantly improves OOD detection [9]. Hendrycks et al. [18] extended self-
supervised techniques with a combination of geometric transformation prediction tasks.
Self-supervised contrastive training [3] is also shown to be effective to leverage from multiple
random transformations to learn in-domain invariances, resulting in better OOD detection
[35, 37, 40].

3 Method
In this paper, we propose a framework for training with shifting transformations to increase
a network’s sensitivity to outlier features and to improve its OOD detection performance.
Intuitively, we simultaneously train a base encoder on multiple shifting transformations
of the training set using auxiliary self-supervised objectives (for unlabeled datasets) and
fully-supervised objectives (for labeled datasets).

3.1 Shifting Transformation Learning

Our transformation learning technique trains a multi-tasked network using self-supervised and
fully-supervised training objectives. We consider a set of geometric (translation, rotation) and
non-geometric (blurring, sharpening, color jittering, Gaussian noise, cutout) shifting transfor-
mations and we train the network with dedicated loss functions for each transformation. For
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the self-supervised transformation learning, given an unlabeled training set of S = {(xi)}M
i=1,

we denote the set of domain invariant transformations Tn by T = {Tn}N
n=1. We generate a

self-labeled training set STn = {(Tn(xi), ŷi)}M
i=1 for each self-supervised transformation Tn

where ŷi are the transformation labels. For example, we consider the image rotation task with
four levels of {0◦, 90◦, 180◦, 270◦} self-labeled rotations and ŷi ∈ {0,1,2,3} in this case.
The self-supervised loss Lssl is the weighted average of loss across all transformations in T :

Lssl(λ ,θ) =
1
N

N

∑
n=1

λn ∑
(Tn(xi),ŷi)∈STn

ℓ( f (n)
θ

(Tn(xi)), ŷi), (1)

where f (n)
θ

is a classification network with parameters θ for the nth task, λ = {λn}N
n=1 are

transformation weights, and ℓ is the multi-class cross-entropy loss. The objective above
trains the network with self-supervised labels only. When class labels are available, given
the labeled training set of S = {(xi,yi)}M

i=1, we generate transformed copies of the original
training sets S ′

Tn
= {(Tn(xi),yi)}M

i=1 where training samples retain their original class labels.
The supervised loss Lsup is defined by:

Lsup(λ
′,θ) =

1
N

N

∑
n=1

λ
′
n ∑
(Tn(xi),yi)∈S′Tn

ℓ( f ′(n)
θ

(Tn(xi)),yi), (2)

which measures the classification loss for transformed copies of the data with λ
′ = {λ ′

n}N
n=1

as transformation coefficients in Lsup. In labeled setup, we combine Lssl and Lsup with the
main supervised learning loss Lmain (e.g., the cross-entropy loss for classifying the in-domain
training set):

Ltotal(λ ,λ
′,θ) = Lmain(θ)+Lssl(λ ,θ)+Lsup(λ

′,θ) (3)

In all unlabeled detection setups, we define Ltotal. := Lssl and discard the main classification
task. In the rest of the paper, for the ease of notation, we use λ to refer to all the coefficients
{λ ,λ ′}, and we drop λ ,θ when it is clear from the context.

Instead of training a separate network f (n)
θ

or f ′(n)
θ

for each task, all the auxiliary tasks and
the main classification task share a feature extraction network and each only introduces an
additional 2-layer fully-connected head for each task. Training is done in a multi-task fashion
in which the network is simultaneously trained for the main classification (if applicable) and
all weighted auxiliary tasks using standard cross-entropy loss.

Visualization: To illustrate the impact of our training loss functions on OOD detection,
Figure 1 shows t-SNE visualization [39] of the CIFAR-10 examples obtained from ResNet-
18 [12] trained with the cross-entropy loss (left) compared to our multitask transformation
learning (right). The visualization shows using shifted in-domain samples during training
increases in-domain features’ distribution, resulting in improved separation between out-
domain (in gray) and in-domain samples (in colors) at the test time. Note that the proposed
approach does not need additional OOD training samples, unlike previous work [16, 27].

3.2 Learning to Select Optimal Transformations
Previous work on self-supervised learning used ad-hoc heuristics for choosing data transforma-
tions for the training set [9, 18, 37]. However, the optimal choice of effective transformations
depends on the source distribution and heuristic approaches cannot scale up to diverse training
distributions when there are many potential transformations. To illustrate this, we train a
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(a) (b)
Figure 2: Our studies show that the optimal transformation set T and their weights λ depend
on the in-domain training set. a) An ablation study to measure effects of individual and paired
transformations on OOD detection performance. b) Optimizing transformation weights (λ )
for auxiliary self-supervised tasks for each training set. Experiments are done in multi-class
classification setup on different training sets.

ResNet-18 [12] with one or two self-supervised transformations that are selected from a pool
of seven transformations. Here, we use the training objective in Eq. 1 with equal weights
for all transformations. The OOD detection results are reported in Figure 2 (a) with CIFAR-
10 dataset as in-distribution and CIFAR-100 as OOD test sets. The heatmap visualization
presents a clear view of how different transformations (and the combinations of two) have
a different impact on the OOD detection performance depending on the source distribution.
Figure 3 in Appendix B.1 presents additional results with CIFAR-100 and ImageNet-30 [18]
datasets as training sets. For example, although rotation is the most effective transformation
on CIFAR-10 and ImageNet-30, it is among the least effective ones for CIFAR-100. On the
other hand, sharpening and color jittering are among the most effective transformations for
CIFAR-100, but they perform worse on CIFAR-10.

To tackle the problem of selecting optimal transformations, we propose a simple two-step
transformation selection framework presented in Alg. 1. Our approach relies on Bayesian
optimization to first select an effective transformation set T . It then uses meta-learning to
learn λ for OOD detection, as discussed next.

Optimizing Transformations Set T : We use Bayesian optimization to identify effective
transformations for each in-domain training set as the first step shown in Alg. 1. Here, we
assume that transformation weights λ are equal to one and we only search for effective
transformations set from a pool of available transformations. Due to the small T search
space (i.e., 2n for n transformations), we use a low-cost Bayesian optimization [1] with Tree-
Parzen estimators to find the optimum self-supervised task set. The Bayesian optimization
objective seeks to minimize the main classification loss Lmain on Din

val , the validation set for
the in-domain training data.

Optimizing Transformations Weights λ : Next, we optimize λ coefficients for the selected
transformation from the previous step to improve the effect of shifting transformation on
representation learning. This step is important because the λ coefficients modulate the impact
of different transformations in the training objective in Eq. 1 and Eq. 2. Here, we assume that λ

is a “meta-parameter” and we use a differentiable hyperparameter optimization algorithm [25]
for optimizing it as the second step shown in Alg. 1. Our optimization algorithm follows a
bi-level optimization setting. The inner training updates train network parameters θ using
Ltotal on Din

train for K steps. Given the current state of parameters θ , we update λ in the outer
loop such that Lmain(θ) is minimized on Din

val . Note that the gradient of Lmain(θ) w.r.t. λ

is defined only through the gradient updates in the inner loop. Thus, the λ updates in the
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Algorithm 1 Transformations T and λ Optimization
Input: Available transformation set T , learning rate α,β , inner steps K
Output: Optimal Topt and λ opt sets
Step 1: Transformations Selection

1: while not converged do
2: Sample a new T set with λ = 1.
3: Train a classifier with Ltotal loss.
4: Calculate Lmain on Din

val as fitness measure.
5: Update the acquisition function.
6: end while

Step 2: λ Weights Optimization
1: Initialize with λ = 1.
2: while not converged do
3: for K steps do
4: θ = θ −α∇θLtotal(λ ,θ) on Din

train
5: end for
6: λ = λ −β∇λLmain(θ) on Din

val
7: end while

outer loop require backpropagating through the gradients updates in the inner loop which
can be done easily using differentiable optimizers [11]. We use K = 1 step for the inner-loop
optimization with SGD when updating θ and we use Adam [21] to update λ with small
learning rate β , set to 0.01. Figure 2 (b) presents λ values during optimization from a study
on three training sets.

Because the choice of effective shifting transformations depends on the in-domain dis-
tribution, our optimization framework avoids the need for Dout

test samples and only relies
on in-domain validation loss as a proxy for representation learning. Our ablation studies
show that multi-task training of shifting transformations with this objective function is an
effective proxy for selecting optimal transformations for both OOD detection and in-domain
generalization.

3.3 OOD Detection Scores
In multi-class detection, we consider two ways for computing the detection score: (i) since
all supervised heads are trained on the same task, we get the λ weighted sum of the softmax
predictions from the main task and all auxiliary supervised transformation heads to compute
an ensemble score. (ii) Alternatively, to reduce the test-time computational complexity, a
faster detection score can be computed using only the main classification head. Given softmax
scores obtained from either (i) or (ii), in all experiments we use KL-divergence loss between
the softmax scores and uniform distribution (similar to [18]) as the OOD detection score:

score =
N

∑
n=1

KL[U∥ f (n)(Tn(x))] (4)

where U represents a uniform distribution, f (n)(Tn(x)) is the prediction probability from
each head. In unlabeled and one-class detection with only self-supervised heads, we first get
the KL-divergence between each auxiliary head and its self-labeled targets, then calculate the
final ensemble score using λ weighted sum of these scores from all auxiliary heads.
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4 Experiments and Results
We run our main experiments on ResNet-18 [12] network to have a fair comparison with
state-of-the-art. We used 7 different image transformations to define self-labeled prediction
tasks in our proposed multi-task training. We used 4 levels of distortions in each semantic-
preserving transformation including rotation of {0◦,90◦,180◦,270◦} degrees, translation in
combinations of ± 30 % horizontal and vertical steps, Gaussian noise with standard deviations
of {0, 0.3, 0.5, 0.8}, Gaussian blur with sigmas of {0, 0.3, 0.5, 0.8}, rectangular cutout with
sizes of {0, 0.3, 0.5, 0.8}, sharpening via image blending with convolution-based edges with
alphas of {0, 0.3, 0.6, 1.0}, and color distortion with jittered brightness, contrast, saturation,
and hue by rates of {0, 0.4, 0.6, 0.8}.

In all experiments, both transformations set T and their training weights λ are optimized
using the proposed framework with the final (T , λ ) sets as follows: for the CIFAR-10 dataset
{(Jitter, 0.8044), (Rotation, 0.6758), (Sharpening, 0.6601)}; for the CIFAR-100 dataset: {(blur,
0.4974), (Jitter, 0.2612), (Translate, 0.3424), (Sharpening, 0.4579)}; and for the ImageNet-30:
{(Noise, 0.5748), (Rotation, 0.3606), (Sharpening, 0.5088)}.

Unless mentioned otherwise, our main evaluation results are based on the ensembled
score from available auxiliary heads.

Ablations Studies: A set of ablations studies are presented in Appendix B.1 that examine
and quantify the (i) effectiveness of the proposed transformation optimization, (ii) advantage of
ensemble detection score, and (iii) OOD detection gain against data augmentation techniques.
Our ablation studies indicate (i) the significant effect of transformation set T selection and their
training weights λ optimization, (ii) considerable improvement in detection performance with
our ensembled detection score (+1.84% in CIFAR-10, +5.04% in CIFAR-100, and +4.09% in
ImageNet-30 datasets), and (iii) substantial OOD detection gain over RandAugment [5] and
AutoAugment [4] augmentation techniques in CIFAR-10 (+2.95%) and CIFAR-100 (+5.67%)
datasets.

4.1 Comparison to State-of-the-Arts
4.1.1 Multi-class Classification

Table 1 presents our main evaluation results for multi-class classification training with Eq. 4 on
CIFAR-10, CIFAR-100, and ImageNet-30 [18] datasets each with six disjoint Dout

test sets with
details provided in Appendix A. We compare our technique with the full supervised Baseline
[15] and current state-of-the-art methods including self-supervised learning (Geometric) [18],
supervised contrastive learning (SupSimCLR) [20] and SSD [35], and contrasting shifted
instances (CSI) [37] and with its ensembled version (CSI-ens). All techniques are trained
on ResNet-18 network with an equal training budget, and all except SSD+ use their softmax
prediction as OOD detection score in multi-class classification. We compared the impact of
both Lssl and Lsup +Lssl training loss functions on OOD performance (in addition to Lmain
for the main classification task which is used by all the techniques in Table 1). Results show
our approach outperforms previous works with a large margin with both Lsup and Lssl training
objectives. The averaged standard deviation for detection AUROC over six test sets from 5
runs of our techniques shows 0.13% for CIFAR-10, 0.33% for CIFAR-100, and 0.18% for
ImageNet-30.

Moreover, Table 1 shows that training on the optimized transformation set T and λ

weights only using an in-domain validation set consistently outperforms the previous work
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Din
train Dout

test
Detection AUROC

Baseline Geometric SupSimCLR SSD+ CSI (ens) Ours
(Lssl) (Lssl +Lsup)

C
IF

A
R

-1
0

SVHN 92.89 97.96 97.22 93.80 96.11 (97.38) 99.92 96.60
Texture 87.69 96.25 94.21 94.05 95.92 (97.18) 97.61 96.91

Places365 88.34 92.57 91.11 91.77 92.21 (93.11) 93.72 98.73
TinyImageNet 87.44 92.06 92.10 90.28 91.33 (92.49) 92.99 93.57

LSUN 89.87 93.57 92.13 94.40 92.91 (94.02) 95.03 94.12
CIFAR-100 87.62 91.91 88.36 90.40 90.60 (92.06) 93.24 94.07

Average 88.98 94.05 92.52 92.45 93.18 (94.37) 95.42 95.67

C
IF

A
R

-1
00

SVHN 79.18 83.62 81.55 83.60 79.22 (87.38) 87.11 90.64
Texture 75.28 82.39 76.83 81.35 78.33 (78.31) 85.47 77.99

Places365 76.07 74.57 75.37 79.16 77.15 (78.1) 77.87 92.62
TinyImageNet 78.53 77.56 80.77 76.29 80.07 (82.41) 80.66 79.25

LSUN 73.73 71.86 73.50 63.77 74.89 (75.22) 74.32 74.01
CIFAR-10 78.26 74.73 73.28 73.94 75.98 (78.44) 79.25 91.56
Average 76.84 77.46 76.88 76.35 77.61 (79.98) 80.78 84.35

Im
ag

eN
et

-3
0

Flowers 101 87.70 92.13 93.81 96.47 95.43 (96.18) 94.19 97.18
CUB-200 85.26 90.58 89.19 96.57 93.32 (94.15) 93.34 96.44

Dogs 90.30 93.25 95.16 95.23 96.43 (97.64) 93.63 97.07
Food 78.93 85.09 83.61 85.48 88.48 (89.04) 82.51 96.49
Pets 92.88 95.28 96.38 96.24 97.35 (98.49) 94.82 96.37

Texture 86.98 92.16 98.70 94.86 97.63 (98.54) 93.99 96.56
Average 87.01 91.42 92.81 94.14 94.77 (95.67) 92.08 96.69

Table 1: Comparison of OOD detection results (AUROC %) with the supervised Baseline,
state-of-the-art self-supervised [18], contrastive learning [20, 35, 37] and our technique with
multi-task self-supervised (Lssl) and hybrid (Lssl +Lsup) transformation learning tasks.

when testing on diverse Dout
test sets. This observation highlights the dependency of the optimal

set of shifting transformations on the in-domain training set as opposed to prior work that
manually selected the shifting transformation. In fact, we observe that all prior work based
on rotation transformation perform worse than the supervised Baseline on the CIFAR-100
experiment when testing with CIFAR-10 as the Dout

test with the exception of CSI-ens.

4.1.2 Unlabeled Detection

Next, we test our technique for multi-class unlabeled and one-class OOD detection trained
with the Lssl loss (Eq. 1) using our proposed transformation optimization framework.

Table 5-a in Appendix B.2 presents results for unlabeled multi-class detection in which
averaged detection AUROC over the six Dout

test sets is outperforming state-of-the-art methods
with a large margin in unlabeled CIFAR-100 (83.95%), unlabeled ImageNet-30 (96.57%)
datasets, with the exception of CSI-ens method showing better results in unlabeled CIFAR-10
(89.80%) dataset.

Table 5-b in Appendix B.2 shows detailed one-class classification results for each of the
CIFAR-10 classes as Din

train and the remaining classes as Dout
test . Our technique with 90.9%

averaged AUROC on CIFAR-10 one-class detection outperforms previous works including
DROCC [10], GOAD [2], Geometric, and SSD, with the exception of CSI-ens which requires
a far more computationally expensive distance-based detection score.
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5 OOD Detection Generalizability
We characterize four main criteria required from a generalizable OOD detection technique,
including i) zero-shot OOD training, ii) no hyperparameter dependency, and iii) generalization
to various unseen OOD distributions and iv) robustness against test-time perturbations. In
this section, we situate our proposed technique against a diverse range of state-of-the-art
OOD detection techniques along these requirements. Table 2 presents results for training on
CIFAR-10 and testing on six Dout

test sets used in Table 1. Note that this is not intended to be
a ranking of different OOD detection techniques; instead, we aim to review trade-offs and
limitations among different detection approaches.

Hyperparameters Dependency: While hyperparameter tuning for the training of in-
domain samples is done using a held-out validation set, the hyperparameter disentanglement
is a crucial property for OOD detection. Specifically, an ideal detector should not be sensitive
to hyperparameters tied to the target outlier distribution. Table 2 divides different techniques
w.r.t their dependency on detection hyperparameters into three levels of high, low, and no
dependency. Techniques with high dependency like ODIN [24] and Mahalanobis [23] use
a validation set of Dout for training, resulting in poor performance under unseen or diverse
mixture of outlier distributions. Table 2 shows over 3% performance gap between the averaged
detection performance on six Dout

test sets (Column 5) and detection performance under an equal
mixture of the same test sets (Column 6) for these two detectors which indicates strong Dout

hyperparameter dependency.
Techniques with low dependency do not use a subset of Dout

test , however, they depend on
hyperparameters such as the choice of Dout

train set (e.g., Outlier Exposure [16]), or hand-crafted
self-supervised tasks [9], [18], or data augmentation [37] that requires post training Dout

test
for validation. These techniques can suffer significantly in settings in which the new source
training set is invariant to previous hand-crafted self-supervised tasks and augmentations, as
seen in Figure 2. On the other hand, techniques with no hyperparameters like Gram Matrices
[34], SSD [35], and our proposed framework bears no hyperparameter dependency on the
choices of in-domain or outlier distribution. Note that many techniques, like ours, use a λ

training hyperparameter to balance training between in-domain classification and auxiliary
tasks. However, in our case, these hyperparameters are tuned automatically without requiring
OOD training samples.

Zero-shot Training: A previous trend in OOD detection techniques considered using a
subset of the target Dout

test for model tuning (e.g., ODIN [24] and Mahalanobis [23]) or using an
auxiliary Dout

train set as a part of model training (e.g., Outlier Exposure [16]). Although these
techniques can achieve high detection performance with the right training set, having access
to the specific Dout

tune for tuning or even any Dout
train for training the detector is not a realistic

assumption in practical setups. An efficient proposal to use these techniques is to integrate
them into zero-shot techniques as presented by [18, 34] when Dout

train is available or to benefit
from taking semi-supervised or few-shot approaches as done by [33, 35].

Detection Generalizability: Recent work on OOD detection recognized the necessity of
diverse Dout

test sets to evaluate the generalizability of OOD detection techniques [27, 34, 40].
Typically, near-OOD and far-OOD sets are chosen based on the semantic and appearance
similarities between the in-domain and outlier distributions and, in some cases, measured
by relevant similarity metrics (e.g., confusion log probability [40]). Following the previous
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Detection
Technique

OOD Detection Criteria Averaged
Detection

Performance

Generalizability Tests
Hyp.-Para.

Dependency Generalizable
Zero
Shot

Mixed
Distribution Far-OOD Near-OOD

ODIN High – – 91.15 88.10 96.70 85.80
Mahalanobis High – – 95.35 92.24 99.10 88.51

Outlier Exposure Low ✓ – 96.24 96.88 98.76 93.41
Geometric Low ✓ ✓ 94.05 94.29 97.96 91.91
CSI-ens Low ✓ ✓ 94.37 94.10 97.38 92.06

SSD No ✓ ✓ 92.45 92.70 93.80 90.40
Gram Matrices No – ✓ 94.17 95.08 99.50 79.01

Ours No ✓ ✓ 95.67 95.55 96.60 94.07

Table 2: Review of OOD detection criteria, averaged detection performance, and general-
izability to unseen OOD test distributions (AUROC %) for a diverse set of OOD detection
techniques. We compare our technique with ODIN [24], Mahalanobis [23], Outlier Exposure
[16], Geometric [18], CSI [37], and Gram [34].

works, we chose CIFAR-100 as the near-OOD test distribution and SVHN as the far-OOD
test distribution for detectors trained on CIFAR-10. While Table 2 shows high performance
on far-OOD for all techniques, Gram Matrices, Mahalanobis, and ODIN show 20.5%, 10.9%,
and 10.6% detection performance drop for near-OOD distribution compared to the far-OOD
test distribution, respectively. In comparison, our technique shows 2.53% performance gap
between far-OOD and near-OOD test distributions.

Detection Robustness: Evaluating the effects of distribution shift on predictive uncertainty
have been previously studied in [10, 36] for real-world application. In Appendix C, we inves-
tigate the effect of natural perturbations and corruptions proposed in [14] on OOD detection
performance. We measure averaged OOD detection results for all 15 image distortions on 5
levels of intensity where both Din

test and Dout
test are treated with the same distortion type and level.

Figure 4 in Appendix C presents detailed OOD detection results in which all techniques show
more performance drop at the higher levels of perturbation intensity. However, distance-based
detectors (Figure 4-a) like Gram and Mahalanobis show significantly less performance drop
(4.23% and 5.24% AUROC drop, respectively) compared to classification-based detectors
(Figure 4-b) like Outlier Exposure and Geometric with over 14% AUROC drop. Our experi-
ments indicate the advantage of distance-based detection methods in OOD detection under
test-time input perturbations.

6 Conclusion
Developing reliable and trustworthy machine learning algorithms for open-world and safety-
critical applications poses a great challenge. In this paper, we presented a simple framework
for OOD detection that leverages representation learning with shifting data transformations,
and we empirically demonstrated its efficacy on several image datasets. We showed that
the optimal choice of shifting transformation depends on the in-domain training distribution
and we propose a framework to automatically choose the optimal transformations for a
given in-domain set without requiring any OOD training samples. Albeit its simplicity, our
proposed method outperforms the state-of-the-art OOD detection techniques and exhibits
strong generalization to different outlier distributions. A limitation of our work is longer
training time and large memory requirement due to the large training batch size. Future work
is focused on improving the efficiency and scalability of shifted transformation learning for
larger datasets.
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