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Shifting Transformation Learning for Robust

» 00D Detection Performance: we evaluate our method in comparison to self-supervised and contrastive

OUt'Of'DiSt ribUtiOn DeteCtion learning based works. Our results indicate the efficiency of multi-task learning for training of a wide range of
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n‘"DI A invariances to in-domain representations.
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v We present evaluation results trained on CIFAR-10,
CIFAR-100, and ImageNet-30 datasets. The outlier
test sets are diverse set of disjoint datasets to

v Table 1 presents evaluation results
(AUROC%) in comparison to the supervised

Introduction Overview training (Baseline) and six state-of-the-art
techniques all trained on ResNet-18 Table 1: OOD detection results (AUROC%) on multi-class classification setup
The real-world deployment of Deep Neural Network v The role of self-supervised learning in OOD detection is backbone.
(DNN) algorithms in safety-critical applications needs poorly explored and limited to one-class classification L B 1 il Il o el Rl I I il P
to address DNNs vulnerabilities to Out-of-distribution problems with rather simple geometric transformations /Our results are reported with both self- — — — P B T
(OOD) samples. We propose a hew te.chmque relying tasks: supervised onlv (L and combination of it Texture 87.69 96.25 94.21 | 97.18 | 94.05 | 97.61 |  96.91
P y ssl
on self-supervision for generalizable out-of- v Ny . : ) . = Places365 88.34 92.57 91.11 | 93.11 | 91.77 | 93.72 | 98.73
distribution: IntUIFlvely, we SIm.ult?nec.)usly train the.bfz\se encodgr on with labeled supervised (Lgq + Ly, ) for & e p— - 91 9249 9028 | 9299 | 935
multiple shifted distributions of the training data using auxiliary transformation learning loss. S LSUN 89.87 93.57 92.13 | 94.02 | 94.4 | 95.03 | 94.12
v' It does not require additional training samples nor auxiliary self-supervised objectives and the main CIFAR-100 |  87.62 91.91 | 8836 | 92.06 | 90.4 | 93.24 | 94.07
out . o g . . . Average 88.98 94.05 92.52 94.37 | 92.45 | 95.42 95.67
need to pre-know the Dt‘”‘get for tuning. classification objective. SVHN 79.18 83.62 81.55 | 87.38 | 83.6 | 87.11 | 90.64
v It incurs no extra computation and memory v We present a simple framework to select effective . o PlText“;ES ;Zgj 32;3 ;223 7788-311 3;11‘(5) 33;‘; Zzz
overheads compared methods like DNN ensembles transformations and module their effect to maximize OOD v Our technique outperforms other state-of- é agoNet | 7853 e 8077 | mrat 7625 066 | 7595
and MC-dropout. detection performance only using the source training data the-art by learning a diverse set of = LSUN 73.73 71.86 735 | 7522 | 63.77 | 7432 | 74.01
without any OOD samples. transformations. Notably, unlike contrastive CIFAR-10 78.26 74.73 73.28 | 78.44 | 73.94 | 79.25 | 91.56
learning, our framework modulates the Average 76.84 77.46 76.88 79.98 | 76.35 | 80.78 | 84.35
impact 'of "different transformations via | reee we sy wn s e e o
Multi-task Transformation Learning t’:a’:m.]ble A weights . inSte.'ad of .e).(plicitly = CUB-200 85.26 90.58 89.19 | 94.15 | 96.57 | 93.34 | 96.44
dividing transformations into positive and g Dogs 90.3 93.25 95.16 | 97.64 | 95.23 | 93.63 | 97.07
negative sets. %; Food 78.93 85.09 83.61 89.04 | 85.48 | 82.51 96.49
. : . : - ] ) o E Pet 92.88 95.28 96.38 98.49 | 96.24 | 94.82 | 96.37
> 1) .MUIt"TaSk. Transformation Leqrnmg: O te(:.hnlque > 3) Optimizing Transformations Weights A: we optimize Texetusre 86.98 92.16 98.7 | 98.54 | 94.86 | 93.99 |  96.56
trains a multi-tasked network using self-supervised or training coefficients (A) for selected transformations to Average 87.01 91.42 92.81 | 95.67 | 94.14 | 92.08 | 96.69
transformations learning tasks T = {(T,, 1,)}n-1based on in the training loss. We use differentiable S— S—
geometric (translation, rotation) and non-geometric hyperparameter optimization for A weights as meta- Out-of-Distribution Generalizability and Robustness
(blurring, sharpening, color jittering, Gaussian noise, parameter in the outer loop by backpropagating through - . . . . o -
cutout) domain-invariant image transformation. the gradient's updates of the network parameters 0. v'We propose four criteria for an ideal OOD detection technique, including i) zero-shot OOD training, 1i) no

hyperparameter dependency, i1ii) generalization to various unseen OOD distributions, and iv) robustness

We use auxiliary self-supervised tasks to learn multiple against test-time perturbations. Table 2 situates our proposed technique against a diverse range of state-of-
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shifted distributions of the training set s = {(x;, y,))}!., Trans. | 8288 | 90.16 | 0065 | 0062 | 0054 | 8905 | 0057 | | Trans.| 7576 |[788N] 76,56 | 7808 7820 | 7677 | 7747 the-art OOD detection techniques trained on the same network with the same training budget.
i Noise | 92.25 | 90.65 | 90.08 | 90.24 | 90.41 | 89.99 | 90.35 Noise | 75.49 | 76.58 | 78.96 | 76.70 | 76.40 | 75.26 | 76.70 / . ° ° \/ D t to R b t
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T — Z {(f(Tn(xi)),j}i) Cutout| 91.43 | 89.95 | 89.99 [ 90.07 [ 89.40 [ 89.93 [ 89.92 | | “Cutout| 76.00 | 76.77 | 75.26 | 77.20 | 76.59 | 77.99 | 76.08 hyperparameter disentanglement previous trend 1n using Samples Investigate the effeCt Of natural
Blur | 8248 | 90.57 | 90.35 | 90.23 | 90.14 | 89.92 | 90.50 Blur | 75651 | 7747 | 76.70 | 76.09 | 75.95 | 76.08 | 77.86 3 . out ° ° °
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& detection and an ideal detector Dy, for training, having access  OOD detection performance. We
Loux = Nz A z (f (Ta(x)), 9 . should not be sensitive to to target outlier samples is not a  measure averaged OOD detection
n=1  (TaG)F0) € Sty i hyperparameters tied to the realistic assumption in many  results for 15 image distortions
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i % 0s Q—i target outlier distribution. Setups. tests with 5 levels Of mtens:ty
Ltotal 3 AOLmain(e) + AnLaux(H) 1 IR D‘z presented in [18].
Each auxiliary task is selected and optimized only using CIFAR-10 b) CIFAR-100 Table 2: OOD detection generalizability and robustness (AUROCY%) in different criteria
- in traini @ g v Generalizable 00D Detection:
the in domain training set. eneratlizaoie etection.
we recognize the necessity of Detection 00D Detection Criteria Averaged Generalizability Tests
. Detection
: : : . diverse D%l sets to evaluate Technique -
> 2) Selecting Transformations Set T: we use Bayesian > 4) Detection Score: we calculate an ensemble detection "o ef'eauslgz ability of 0OOD Di‘;i-;ﬂgfc-y Generalizable | Zero-shot | o lormance iexed | Far-00D | Near-OOD
optimization to identify effective transformations for score by combining prediction entropy from the main g : y ODIN [28] High - - 91.15 88.1 96.7 85.8
i NS ¢ | of ilabl .. 1 . detection techniques w.r.t. the | Mahatanobis [29] High - - 95.35 92.24 99. 1 88.51
€ach 1n-domain training from a pool o1 availlable classification task and all auxiliary transformation heads distance between the DI . set |outtier Exposure [20] Low 7 » 96 24 96 88 98 76 | 93 41
transformations. In our experiments we observed that to compute the OOD detection score. and Dot sets fratn Geometric SSL [21] Low v v 94.05 94.29 97.96 |  91.91
gradient-based optimization is not able to capture the et : Grar(rzlsll\/\:\:ricg:s&{ - oW ’ z 3237 A T
effects of transformation itself on the training. SSD [46] No 7 7 92.47 92.7 93.8 90.4
Ours No v v 95.67 95.55 96.6 94.07
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