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✓We present evaluation results trained on CIFAR-10,

CIFAR-100, and ImageNet-30 datasets. The outlier

test sets are diverse set of disjoint datasets to
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Overview

✓ The role of self-supervised learning in OOD detection is 

poorly explored and limited to one-class classification 

problems with rather simple geometric transformations 

tasks:

✓ Intuitively, we simultaneously train the base encoder on 

multiple shifted distributions of the training data using 

auxiliary self-supervised objectives and the main 

classification objective.

✓ We present a simple framework to select effective 

transformations and module their effect to maximize OOD 

detection performance only using the source training data 

without any OOD samples.

➢1) Multi-Task Transformation Learning: our technique

trains a multi-tasked network using self-supervised or

fully-supervised training objectives. We define auxiliary

transformations learning tasks 𝛵 = (𝑇𝑛, 𝜆𝑛) 𝑛=1
𝑁 based on

geometric (translation, rotation) and non-geometric

(blurring, sharpening, color jittering, Gaussian noise,

cutout) domain-invariant image transformation.

➢3) Optimizing Transformations Weights 𝝀: we optimize

training coefficients (𝛌) for selected transformations to

efficiently modulate the impact of each transformation

in the training loss. We use differentiable

hyperparameter optimization for 𝛌 weights as meta-

parameter in the outer loop by backpropagating through

the gradient's updates of the network parameters 𝜽.

Multi-task Transformation Learning

➢2) Selecting Transformations Set 𝜯: we use Bayesian

optimization to identify effective transformations for

each in-domain training from a pool of available

transformations. In our experiments we observed that

gradient-based optimization is not able to capture the

effects of transformation itself on the training.

We use auxiliary self-supervised tasks to learn multiple

shifted distributions of the training set 𝑆 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑀

Each auxiliary task is selected and optimized only using

the in domain training set.

➢4) Detection Score: we calculate an ensemble detection

score by combining prediction entropy from the main

classification task and all auxiliary transformation heads

to compute the OOD detection score.

➢OOD Detection Performance: we evaluate our method in comparison to self-supervised and contrastive

learning based works. Our results indicate the efficiency of multi-task learning for training of a wide range of

invariances to in-domain representations.

The real-world deployment of Deep Neural Network

(DNN) algorithms in safety-critical applications needs

to address DNNs vulnerabilities to Out-of-distribution

(OOD) samples. We propose a new technique relying

on self-supervision for generalizable out-of-

distribution:

✓ It does not require additional training samples nor

need to pre-know the 𝑫𝒕𝒂𝒓𝒈𝒆𝒕
𝒐𝒖𝒕 for tuning.

✓ It incurs no extra computation and memory

overheads compared methods like DNN ensembles

and MC-dropout.

Introduction

Out-of-Distribution Generalizability and Robustness

✓Table 1 presents evaluation results

(AUROC%) in comparison to the supervised

training (Baseline) and six state-of-the-art

techniques all trained on ResNet-18

backbone.

✓Our results are reported with both self-

supervised only (ℒ𝒔𝒔𝒍) and combination of it

with labeled supervised ( ℒ𝒔𝒔𝒍 + ℒ𝒔𝒖𝒑 ) for

auxiliary transformation learning loss.

✓Our technique outperforms other state-of-

the-art by learning a diverse set of

transformations. Notably, unlike contrastive

learning, our framework modulates the

impact of different transformations via

trainable 𝝀 weights instead of explicitly

dividing transformations into positive and

negative sets.
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𝒐𝒖𝒕 Supervised

Baseline

Geometric 

SSL [21]

SupSimCRL

[24]

CSI-ens

[48]

SSD 

[46]
Our 
(𝓛𝐒𝐒𝐋)

Our
(𝓛𝐒𝐒𝐋 +𝓛𝐒𝐮𝐩)

C
IF

A
R

1
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SVHN 92.89 97.96 97.22 97.38 93.8 99.92 96.6

Texture 87.69 96.25 94.21 97.18 94.05 97.61 96.91

Places365 88.34 92.57 91.11 93.11 91.77 93.72 98.73

ImageNet 87.44 92.06 92.1 92.49 90.28 92.99 93.57

LSUN 89.87 93.57 92.13 94.02 94.4 95.03 94.12

CIFAR-100 87.62 91.91 88.36 92.06 90.4 93.24 94.07

Average 88.98 94.05 92.52 94.37 92.45 95.42 95.67

C
IF

A
R

1
0
0

SVHN 79.18 83.62 81.55 87.38 83.6 87.11 90.64

Texture 75.28 82.39 76.83 78.31 81.35 85.47 77.99

Places365 76.07 74.57 75.37 78.1 79.16 77.87 92.62

ImageNet 78.53 77.56 80.77 82.41 76.29 80.66 79.25

LSUN 73.73 71.86 73.5 75.22 63.77 74.32 74.01

CIFAR-10 78.26 74.73 73.28 78.44 73.94 79.25 91.56

Average 76.84 77.46 76.88 79.98 76.35 80.78 84.35

Im
a
g
e
N

e
t-

3
0

Places365 89.6 92.17 90.81 94.28 95.47 92.97 97.54

Flowers 101 87.7 92.13 93.81 96.18 96.47 94.19 97.18

CUB-200 85.26 90.58 89.19 94.15 96.57 93.34 96.44

Dogs 90.3 93.25 95.16 97.64 95.23 93.63 97.07

Food 78.93 85.09 83.61 89.04 85.48 82.51 96.49

Pets 92.88 95.28 96.38 98.49 96.24 94.82 96.37

Texture 86.98 92.16 98.7 98.54 94.86 93.99 96.56

Average 87.01 91.42 92.81 95.67 94.14 92.08 96.69

Detection 

Technique

OOD Detection Criteria Averaged 

Detection 

Performance

Generalizability Tests

Hyp.-Para. 

Dependency
Generalizable Zero-shot

Mixed

Distribution
Far-OOD Near-OOD

ODIN [28] High -- -- 91.15 88.1 96.7 85.8

Mahalanobis [29] High -- -- 95.35 92.24 99.1 88.51

Outlier Exposure [20] Low ✓
. -- 96.24 96.88 98.76 93.41

Geometric SSL [21] Low ✓
.

✓
. 94.05 94.29 97.96 91.91

CSI-ens [48] Low ✓
.

✓
. 94.37 94.1 97.38 90.6

Gram Matrices [45] No -- ✓
. 94.17 95.08 99.5 79.01

SSD [46] No ✓
.

✓
. 92.47 92.7 93.8 90.4

Ours No ✓
.

✓
. 95.67 95.55 96.6 94.07

✓We propose four criteria for an ideal OOD detection technique, including i) zero-shot OOD training, ii) no

hyperparameter dependency, iii) generalization to various unseen OOD distributions, and iv) robustness

against test-time perturbations. Table 2 situates our proposed technique against a diverse range of state-of-

the-art OOD detection techniques trained on the same network with the same training budget.
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Table 1: OOD detection results (AUROC%) on multi-class classification setup

Table 2: OOD detection generalizability and robustness (AUROC%) in different criteria
✓Generalizable OOD Detection:

we recognize the necessity of

diverse 𝑫𝒕𝒆𝒔𝒕
𝒐𝒖𝒕 sets to evaluate

the generalizability of OOD

detection techniques w.r.t. the

distance between the 𝑫𝒕𝒓𝒂𝒊𝒏
𝒊𝒏 set

and 𝑫𝒕𝒆𝒔𝒕
𝒐𝒖𝒕 sets.

✓Hyperparameters Dependency:

hyperparameter disentanglement

is a crucial property for OOD

detection and an ideal detector

should not be sensitive to

hyperparameters tied to the

target outlier distribution.

✓Zero-shot Training: despite the

previous trend in using samples
from 𝑫𝒕𝒂𝒓𝒈𝒆𝒕

𝒐𝒖𝒕 for tuning or

𝑫𝒕𝒓𝒂𝒊𝒏
𝒐𝒖𝒕 for training, having access

to target outlier samples is not a

realistic assumption in many

setups.

✓Detection Robustness: we

investigate the effect of natural

perturbations and corruptions on

OOD detection performance. We

measure averaged OOD detection

results for 15 image distortions

tests with 5 levels of intensity

presented in [18].


