
A Experiments Details

Learning data invariances with semantic-preserving transformations is a common technique
to incorporate inductive biases into representation learning and OOD detection. However,
training an invariant network is challenging, and common data augmentation techniques do
not guarantee that [15] and may even degrade training performance [2]. To address this issue,
Tack et al. [20] suggested to use data augmentations as negative samples in contrastive training,
Xiao et al. [23] proposed using multiple embedding sub-spaces for each augmentation, and
Lee et al. [12] used label augmentation to train for image invariances. In contrast to these
work, we propose to train semantic-preserving transformations in a multi-task training manner.

Dataset details: Our experiments are focused on image domain and we use CIFAR-10 [11],
CIFAR-100 [11], and ImageNet-30 [9] in multi-class and unlabeled detection. CIFAR-10 and
CIFAR-100 consist of 50,000 training and 10,000 test samples, respectively. ImageNet-30 is
a selection of 30 classes from ImageNet [6] dataset that contains 39,000 training and 3,000
test samples. In one-class classification, we only used single classes of CIFAR-10 as training
source (Din

train) and the other classes as test set (Dout
test). All Dout

test test images are resized to
the Din

train image size which is 32x32 in all CIFAR-10/100 experiments. In ImageNet-30
experiments, we first resize the images to 256x256 and then center crop to 224x224.

Training Details: All experiments are based on ResNet-18 network with mini-batch size
of 64, SGD optimizer with momentum of 0.9, initial learning rate of 0.1 (decayed using a
cosine annealing schedule). Despite the set of shifting transformations, we still use a few
data invariant “native augmentations” including random horizontal flip and small random
crop and padding for the main supervised head. We use cross-entropy loss for all supervised
and self-supervised branches with labels generated for self-supervised tasks. We apply all
transformation targets (e.g., all four rotations for the rotation transformation) from T on every
mini-batch during the training, and therefore, the final mini-batch is the base mini-batch size
multiplied by the total number of shifting transformations. We observe that learning multiple
shifting transformations benefits from longer training time (similar to contrastive learning
setups). So we train all multi-class classification models for 800 epochs and unsupervised
models for 200 epochs. Ablation studies are trained for only 200 epochs.

Evaluation Setup and Metrics: We evaluate the OOD detection performance using multiple
diverse Dout

test sets to determine how well the detector can generalize on these unseen distribu-
tions, including test sets of SVHN [16], TinyImageNet [19]), Places365 [25], LSUN [24],
and CIFAR-10 (or CIFAR-100 when CIFAR-10 is the source training set) for CIFAR-10 and
CIFAR-100 experiments and Pets [18], Flowers-101 [17]), CUB-200 [22], Dogs [10], Food
[1] for ImageNet-30 experiments. We choose the area under the receiver operating character-
istic curve (AUROC) [5] as a threshold agnostic metric in all evaluations. The AUROC will
be 100% for the perfect detector and 50% for a random detector. In all evaluations, we use
Dout

test (test set of the outlier dataset) as positive OOD samples and the Din
test (test set of source

training dataset) as negative samples for detection.
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(a) (b)

(c) (d)

(e) (f)
Figure 1: Our studies show that the optimal transformation set T and their weights λ depend
on the in-domain training set. Left: Ablation study to measure effects of individual and
paired transformations on OOD detection performance. Right: Optimizing transformation
weights (λ ) for auxiliary self-supervised tasks for each training set. Experiments are done in
multi-class classification setup on different training sets.

B Additional Results
In this section, we provide additional ablation experiments to quantify contributions made by
different parts of our model.

B.1 Ablation Studies
Figure 1 present additional ablation study results with CIFAR-10, CIFAR-100 and ImageNet-
30 [9] datasets as in-distribution and CIFAR-100, CIFAR-10, and Pets [18] as example OOD
test sets, respectively.

Transformation Optimization: Table 1-a presents an analysis of the effects of our trans-
formation set T and λ weights optimizations on OOD detection when training on CIFAR-10
and testing on CIFAR-100 as Dout

test . When training with all available transformations with
equal λ = 1 weights (first row), the detection AUROC drops 2.76% compared to training
with both T and λ optimized (forth row). We also observe that when only enabling λ or T
optimizations (second and third rows, respectively), the OOD detection performance is sub-
optimal. We hypothesize that the gradient-based λ optimization only has access to training
signal from a few gradient updates on θ and it does not capture the full effect of mini-batch
transformations on OOD detection for long training. In contrast, Bayesian optimization in T
optimization can capture the effect of each transformation on the full training and improves
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access to Dout λn opt. T opt. AUROC
– – – 90.36
– ✓ – 91.72
– – ✓ 92.90
– ✓ ✓ 93.12

✓ ✓ ✓ 93.24

Din only
main head

ensemble
aux. heads

CIFAR-10 93.83 95.67
CIFAR-100 79.30 84.35

ImageNet-30 92.59 96.69

(a) (b)

Table 1: Ablations studies. (a) effectiveness of T and λn optimizations and optimization loss.
(b) Detection using only the main classification head vs. ensemble of auxiliary heads.

Din Baseline AutoAug. RandAug. Ours

CIFAR-10 88.98 92.46 92.72 95.67
CIFAR-100 76.84 78.68 78.62 84.35

Table 2: Detection AUROC with our technique vs. data augmentation.

OOD detection by a large margin. Nevertheless, we obtain the best OOD detection result
(fourth row) with both λ and T optimizations.

Our method avoids making any assumption on the availability of any Dout for model
training or hyperparameter optimization unlike prior work such as ODIN [13], Mahalanobis
[14], Outlier Exposure [8] detectors. In the absence of OOD samples for training, we utilize
the in-domain validation loss as a proxy and we examine the generalization capability of our
model to unseen examples to guide the optimization of shifting transformations.

In an ablation experiment in Table 1 last row, we use a disjoint subset of 80 Million
Tiny Images dataset [21] as the source of unlabeled Dout and the KL divergence between
Dout predictions and uniform distribution as the optimization objective for both T and λ

optimizations. Interestingly, we only observe a slight performance improvement when
assuming access to an auxiliary Dout for transformation optimization.

Advantage of Ensemble Detection Score: Table 1-b presents OOD detection performance
when using only clean samples for the main classification head compared to using transformed
samples for generating an ensemble of detection scores from all auxiliary heads. Results are
based on averaged OOD detection AUROC over six Dout

test sets. We observe a clear performance
increase when using the ensemble of auxiliary heads compared to the main classification
head.

Comparison to Data Augmentation Techniques: A natural question to ask is whether
the improvements in OOD detection could also be obtained with the supervised baseline
that is trained with data augmentations. In Table 2, we compare our method with the
supervised baseline trained with RandAugment [4] and AutoAugment [3] techniques as two
popular augmentation techniques. We observe that both data augmentation techniques achieve
competitive OOD detection performance on ResNet-18, improving upon the supervised
baseline. However, they perform significantly lower than our proposed shifting transformation
learning. Note that we could not use our shifting transformations as the data augmentation in
supervised training as our transformations heavily change the input distribution and do not let
training converge.
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Din Geometric SimCLR SSD CSI-ens Ours
(Lssl)

CIFAR-10 86.04 77.84 84.54 91.99 89.8
CIFAR-100 75.28 48.81 66.41 71.91 83.95

ImageNet-30 85.11 65.27 87.42 92.13 96.57

(a) Unlabeled CIFAR-10, CIFAR-100, and ImageNet-30

Din DROCC GOAD Geom. SSD CSI
-ens

Ours
(Lssl)

Airplane 81.7 75.5 80.2 82.7 90.0 84.3
Automobile 76.7 94.2 96.6 98.5 99.1 96.0

Bird 66.6 82.4 85.9 84.2 93.3 87.7
Cat 67.2 72.1 81.7 84.5 86.4 82.3

Deer 73.6 83.7 91.6 84.8 94.8 91.0
Dog 74.4 84.8 89.8 90.9 94.4 91.5
Frog 74.4 82.8 90.2 91.7 94.4 91.1
Horse 71.3 93.4 96.1 95.2 95.2 96.3
Ship 80.0 92.6 95.1 92.9 98.2 96.3

Truck 76.2 85.1 92.8 94.4 97.9 92.3
Average 74.2 84.7 90.0 90.0 94.3 90.9

(b) One-class Detection on CIFAR-10

Table 3: Comparison of OOD detection results (AUROC %) with different one-class classifi-
cation and unlabeled multi-class datasets on CIFAR-10, CIFAR-100, and ImageNet-30.

B.2 Unlabeled OOD Detection
Table 3-a presents results for unlabeled multi-class detection in which averaged detection
AUROC over the six Dout

test sets is outperforming state-of-the-art methods with a large margin
except for the CIFAR-10 experiment. Table 3-b shows detailed one-class classification results
for each of the CIFAR-10 classes as Din

train and the remaining classes as Dout
test .
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(a) Distance-based techniques (b) Classification-based techniques

Figure 2: OOD detection robustness results for (Left) distance-based and (Right)
Classification-based techniques with both Dout

test and Din
test perturbed under 5 levels of in-

tensity. × sign represents the mean AUROC.

C Additional Robustness Results

Figure 2 presents a robustness evaluation for different distance-based and classification-based
techniques under test-time perturbations. In this experiment, both in-domain and OOD
samples are perturbed with 15 natural perturbations on 5 levels of intensity proposed by
[7]. Our results indicate that all techniques show more performance drop at the higher
levels of perturbation intensity. Specifically, distance-based detectors show significantly
less performance drop compared to classification-based detectors like Outlier Exposure and
Geometric with over 14% AUROC drop. Noticeably, the Mahalanobis detector with access
to perturbed Dout

test samples for tuning maintains fairly high detection performance under all
perturbation types. Looking into individual corruption types, all techniques perform best
under image contrast distortion and the worst on glass blur corruption.
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