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1 Contents

This supplementary material document contains additional information about this work. It
contains:

Section 2 Additional details on the parsing algorithm used to convert the voxel repre-
sentation into a set of object poses.

Section 3 Additional details on the form of the voxel representations used in this work.

Section 4 Additional details on the network architectures used in this work.

Section 5 Additional details on the dataset created and used in this work.

Section 6 Additional details on the software and hardware used in this work.

Section 7 Larger and additional examples of imagined scenes.

Section 8 Larger and additional examples of varying the latent representation.

Section 9 Larger and additional examples of varying the stability context.

This document is accompanied by a video file supplementaryVideo.mp4 which
visualises the stability of imagined systems through physics simulation. Please see this video
for examples of the physical behaviour of imagined scenes and for a general summary.

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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2 Parsing algorithm
Our voxel parsing algorithm (see alg. 1) converts the voxel representation produced by the
generator into a set of discrete object poses defined in terms of object class, and translations
and rotations on the canonical YCB [2] mesh representations. These transform the object
mesh representation from a canonical coordinate system into a world coordinate system.

Data: Voxel representation V
Data: Canonical object point sample set C
Result: Object pose set O
foreach Class voxel representation Vi in V do

Extract boundary voxel locations Pi from Vi
Extract connected segments SPi from Pi
foreach Connected segment sPi, j in SPi do

while Size of sPi, j >
1
16 size of object ci do

Fit object ci to component sPi, j via ICP to produce object pose oi, j
Add oi, j to O
Remove points in sPi, j which agree with oi, j

end
end

end
Algorithm 1: Algorithm for parsing semantic voxel representation into a set of voxel
poses

3 Representations
The input voxel representations used in this work have dimensions of 64× 64× 32 voxels.
The channel structure consists of 1 channel per object class (14 in total), 1 to encode the
shape of the table, and 1 channel to encode the visibility of the voxel (i.e. whether the voxel
belongs to the visible surfaces and free space, or lies behind the visible surfaces). When
utilising a latent vector, we augment the latent representation with 32 additional channels for
the latent representation. The latent vector is identical for all voxels. Finally, 1 additional
channel is added if using stability context to hold the stability score.

The output voxel representations have dimensions of 64×64×32 voxels, and the channel
structure consists of 1 channel per object class including the table (15 in total).

4 Network architectures

4.1 Generator
The generator has a U-Net [10] design and consists of 5 stride-2 three dimensional convolu-
tional layers with 128, 192, 288, 432 and 648 channels respectively followed by 5 transposed
convolutional layers with 648, 432, 288,192 and 128 channels respectively. All convolu-
tional layers use a kernel size of 3×3×3, and are followed by leaky ReLU activation layers
[8]. The final layer in the network is a convolutional layer with a kernel size of 1× 1× 1
which outputs a representation with 15 channels (objects and table). All layers are initialised
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by Xavier uniform initialisation [6]. Due to the U-Net design there are skip connections
between layers of the same spatial resolution.

4.2 Discriminator and stability scoring networks
These networks consist of 5 stride-2 three dimensional convolutional layers with 128, 192,
288, 432 and 648 channels respectively. All convolutional layers use a kernel size of 3×3×
3, and are followed by leaky ReLU activation layers. The final layer in the network is a fully
connected layer which outputs a scalar number. All layers are initialised by Xavier uniform
initialisation. These networks use weight normalisation [11].

5 Dataset
Scenes were generated using the Bullet physics engine [5]. For scenes generated by sam-
pling up to 14 object classes without replacement, a simple flat table was used. For scenes
generated by sampling up to 25 object classes with replacement, a table with a raised rim
was used to prevent objects from being pushed off the table. If objects fell off the table,
additional objects were added and simulated until the table contained the desired number
of objects. Reference object properties from the YCB object set [2] were used for physical
simulations.

During training scenes were augmented by applying random rotations about the axis of
gravity, in integer multiples of 90◦, consistently to all scene data.

The datasets are accessible from the project webpage1.

6 Software and hardware
The dataset generation software was implemented in MATLAB [7]. Physics simulation was
performed via the Bullet physics engine [5]. Rendering was performed via a custom renderer
implemented in MATLAB which made use of some transformation functions from the Cam-
era Calibration Toolbox for MATLAB [1]. Neural networks and training were implemented
in PyTorch [9].

This work was executed on a computer with an Intel i7-6700k [3] processor, 64 GiB of
random access memory, and an Nvidia GeForce GTX 1070 [4] graphics processing unit.

7 Imagined scenes
Larger and additional imagined scenes can be found in figures 1, 2, 3, 4, 5, and 6. Please see
section 5.6 of the paper for discussion.

8 Varying the latent representation
Larger and additional imagined scenes generated using different latent input samples can be
found in figures 7, 8, and 9. Please see section 5.5 of the paper for discussion.

1https://hectorbasevi.github.io/imagining-hidden-supporting-objects
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(a) (b)
Figure 1: Two examples of imagined scenes produced by the three models. The first row
shows ground truth scenes. The second row shows visible surfaces (yellow regions are non-
visible). The third row shows explanations from the regression model. The fourth row shows
explanations from the generative model trained without stability context. The fifth row shows
explanations from the full system. The results in this figure are explained and discussed in
section 5.6 of the paper.
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(c) (d)
Figure 2: Two examples of imagined scenes produced by the three models. The first row
shows ground truth scenes. The second row shows visible surfaces (yellow regions are non-
visible). The third row shows explanations from the regression model. The fourth row shows
explanations from the generative model trained without stability context. The fifth row shows
explanations from the full system. The results in this figure are explained and discussed in
section 5.6 of the paper.
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(e) (f)
Figure 3: Two examples of imagined scenes produced by the three models. The first row
shows ground truth scenes. The second row shows visible surfaces (yellow regions are non-
visible). The third row shows explanations from the regression model. The fourth row shows
explanations from the generative model trained without stability context. The fifth row shows
explanations from the full system. The results in this figure are explained and discussed in
section 5.6 of the paper.
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(g) (h)
Figure 4: Two examples of imagined scenes produced by the three models. The first row
shows ground truth scenes. The second row shows visible surfaces (yellow regions are non-
visible). The third row shows explanations from the regression model. The fourth row shows
explanations from the generative model trained without stability context. The fifth row shows
explanations from the full system. The results in this figure are explained and discussed in
section 5.6 of the paper.
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(i) (j)
Figure 5: Two examples of imagined scenes produced by the three models. The first row
shows ground truth scenes. The second row shows visible surfaces (yellow regions are non-
visible). The third row shows explanations from the regression model. The fourth row shows
explanations from the generative model trained without stability context. The fifth row shows
explanations from the full system. The results in this figure are explained and discussed in
section 5.6 of the paper.
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(k) (l)
Figure 6: Two examples of imagined scenes produced by the three models. The first row
shows ground truth scenes. The second row shows visible surfaces (yellow regions are non-
visible). The third row shows explanations from the regression model. The fourth row shows
explanations from the generative model trained without stability context. The fifth row shows
explanations from the full system. The results in this figure are explained and discussed in
section 5.6 of the paper.
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Figure 7: Example 1 of the effect of varying the latent representation, showing the effect
of different random samples of the latent representation on scene imagination for the full
system. Varying the latent representation is discussed in section 5.5 of the paper.
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Figure 8: Example 2 of the effect of varying the latent representation, showing the effect
of different random samples of the latent representation on scene imagination for the full
system. Varying the latent representation is discussed in section 5.5 of the paper.
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Figure 9: Example 3 of the effect of varying the latent representation, showing the effect
of different random samples of the latent representation on scene imagination for the full
system. The effect of varying the latent representation is discussed in section 5.5 of the
paper.
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9 Varying the stability context
Larger and additional imagined scenes generated using different stability contexts can be
found in figures 10, 11, and 12. Please see section 5.5 of the paper discussion.
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Figure 10: Example 1 of the effect of varying the stability context, showing the effect of
varying the stability context on scene explanation for the full system. The stability context
changes from instability to stability moving from left to right and then down the page (as
if reading text). The effect of varying the stability context is discussed in section 5.5 of the
paper.
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Figure 11: Example 2 of the effect of varying the stability context, showing the effect of
varying the stability context on scene explanation for the full system. The stability context
changes from instability to stability moving from left to right and then down the page (as
if reading text). The effect of varying the stability context is discussed in section 5.5 of the
paper.
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Figure 12: Example 3 of the effect of varying the stability context, showing the effect of
varying the stability context on scene explanation for the full system. The stability context
changes from instability to stability moving from left to right and then down the page (as
if reading text). The effect of varying the stability context is discussed in section 5.5 of the
paper.
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