
SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION 1

Towards Device Efficient Conditional Image
Generation
Nisarg A. Shah
snisarg812@gmail.com

Gaurav Bharaj
first.last@gmail.com

AI Foundation
California, USA

Abstract

We present a novel algorithm to reduce tensor compute required by a conditional image
generation autoencoder without sacrificing quality of photo-realistic image generation.
Our method is device agnostic, and can optimize an autoencoder for a given CPU-only,
GPU compute device(s) in about normal time it takes to train an autoencoder on a generic
workstation. We achieve this via a two-stage novel strategy where, first, we condense
the channel weights, such that, as few as possible channels are used. Then, we prune the
nearly zeroed out weight activations, and fine-tune the autoencoder. To maintain image
quality, fine-tuning is done via student-teacher training, where we reuse the condensed
autoencoder as the teacher. We show performance gains for various conditional image
generation tasks: segmentation mask to face images, face images to cartoonization, and
finally CycleGAN-based model over multiple compute devices. We perform various
ablation studies to justify the claims and design choices, and achieve real-time versions of
various autoencoders on CPU-only devices while maintaining image quality, thus enabling
at-scale deployment of such autoencoders.

1 Introduction
High demand for consumer avatars, filters, and scene generation applications has led to
an increased at-scale need of photo-realistic image generation. Such applications rely on
Generative Adversarial Networks (GANs) [9] and supervised image-to-image style trans-
fer [8, 25, 50] via autoencoders such as U-nets [40]. Technical advancements, and availability
of deep learning APIs [1, 37] has helped achieve image generation. Backends of such APIs
rely on fast tensor operations, parallelized via GPUs. However, real-time image generation
via GAN-like methods has high deployment cost due to GPU compute costs and high break-
even profitability point. Although certain edge devices are native GPUs [52] capable, they
can suffer from slow inference, quality and resolutions deterioration of generated images.
Thus, we desire a solution that can quickly optimize neural-nets for a given compute device,
without sacrificing image quality and inference times. State-of-the-art literature suggests
several approaches – neural architecture design (NAD) [19, 23], network architecture search
(NAS) [58], neural-net compression (quantization [11], distillation [38], and pruning [11, 16]).
We propose a novel net pruning algorithm that be employed along with NAD and NAS.
Typical neural-net model compression techniques focus on image classification and detec-

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio} 2014

Citation
Citation
{Gatys, Ecker, and Bethge} 2016

Citation
Citation
{Isola, Zhu, Zhou, and Efros} 2017

Citation
Citation
{Wang, Liu, Zhu, Liu, Tao, Kautz, and Catanzaro} 2018{}

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard, etprotect unhbox voidb@x protect penalty @M {}al.} 2016

Citation
Citation
{Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Wang, Huang, Xu, Liu, Liu, and Wang} 2020{}

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Iandola, Han, Moskewicz, Ashraf, Dally, and Keutzer} 2016

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{Han, Mao, and Dally} 2015{}

Citation
Citation
{Polino, Pascanu, and Alistarh} 2018

Citation
Citation
{Han, Mao, and Dally} 2015{}

Citation
Citation
{He, Zhang, and Sun} 2017

2 SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION

lla U-net Stage I U-net Stage II U-net

Regularize Layer Filters

Pruned Deactivated Filters

Final Fine-tuned Pruned Network

(Teacher)
Stage I

 U-net

(Student)
Pruned

 U-net

Figure 1: Our method DECIG, dynamically condenses channel filter and prunes GAN-based
autoencoders for image generation. During Stage I, vanilla U-net autoencoder is trained
with penalization, where weight distribution (centre-bottom) has several resulting near-zero
value channels that can be pruned. During Stage II, the pruned network is fine-tuned in
student-teacher manner using condensed model (from Stage-I) as the teacher.

tion [15]. Applying such methods for conditional image generation is relatively less explored
and a naïve application may lead to image artifacts. Shu et al. [43] propose a channel pruning
GAN compression evolutionary search algorithm, however, their method is designed for
cyclic-consistency image generation [56], and nontrivial to extend for non-cyclic consistency
GANs [25, 41]. Shu et al. [43] show that generators compressed by classifier compression
methods [33] suffer performance decay compared to original generators. Chen et al. [5]
propose GAN compression by training efficient generators by model distillation and remove
dependency on cyclic consistency. Their student network is handcrafted and requires signifi-
cant architectural engineering for good performance.
We propose a novel strategy to create compute efficient autoencoders for a given device. We
do this by condensing neural-net channel filter weight distribution that condense filter usage,
and later, prunes least activated filters while fine-tune using student-teacher model, where,
the condensed autoencoder acts as the teacher. Our method is device agnostic, and optimizes
neural-nets for given device. This also allows for a trade-off between computation complexity,
and synthesized image quality, Fig 3. We summarize our novel contributions below:

1. A novel strategy to reduce compute costs via dynamic channel filter condensing and
pruning GAN autoencoders for image generation.

2. A filter penalization loss for better filter weight distribution for easy pruning across
layers, and detection of a “hinge” to get a minimum threshold for a particular filter
structure, obtaining compute efficient autoencoders.

3. Optimized autoencoders perform real-time inference on CPU-only, CPU-GPU compute,
with equivalent FID vs. vanilla autoencoders for conditional image generation.

2 Related Works
Conditional Image Generation Goodfellow et al. [9]’s tremendous success with image
generation led to several vision and graphics applications [27, 36, 48]. For image-to-image

Citation
Citation
{He, Liu, Wang, Hu, and Yang} 2019

Citation
Citation
{Shu, Wang, Jia, Han, Chen, Xu, Tian, and Xu} 2019

Citation
Citation
{Zhu, Park, Isola, and Efros} 2017

Citation
Citation
{Isola, Zhu, Zhou, and Efros} 2017

Citation
Citation
{Sanakoyeu, Kotovenko, Lang, and Ommer} 2018

Citation
Citation
{Shu, Wang, Jia, Han, Chen, Xu, Tian, and Xu} 2019

Citation
Citation
{Liu, Li, Shen, Huang, Yan, and Zhang} 2017

Citation
Citation
{Chen, Wang, Shu, Wen, Xu, Shi, Xu, and Xu} 2020

Citation
Citation
{Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio} 2014

Citation
Citation
{Ledig, Theis, Husz{á}r, Caballero, Cunningham, Acosta, Aitken, Tejani, Totz, Wang, etprotect unhbox voidb@x protect penalty @M {}al.} 2017

Citation
Citation
{Park, Liu, Wang, and Zhu} 2019

Citation
Citation
{Tewari, Elgharib, Bharaj, Bernard, Seidel, P{é}rez, Z{ö}llhofer, and Theobalt} 2020

SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION 3

tasks, such as, segmentation masks to image generation [25, 36, 51] aim to achieve better
image quality, these methods require high-end (Nvidia's V100) GPUs for fast inference. At-
scale use of such methods requires lower compute, and inference costs. Reducing neural-net
compute is an active area of research. While most tackle non-image generation tasks, we
explicitly aim to solve for conditional image generation. Such methods can be categorized as
(1) Neural Architecture Design, (2) Neural Architecture Search, and (3) Neural-net Compres-
sion. Our work falls under the last category; we reduce compute by designing an algorithm
that given an input autoencoder ef�ciently prunes �lters, while maintaining generated image
quality.

Neural Architecture Design of CNNs [13, 26, 44] led to massive gains for vision tasks.
Such deep architectures are heavy on compute, even more so as autoencoders [40]. While
several lightweight architectures have been proposed [10, 19, 21, 23, 42, 47, 55], these works
exploit costly tensor blocks within architectures, and replace them with lightweight ones, or
perform tensor compute in an ef�cient manner to improve the performance, generally for
non-image generation. Wanget al. [52] use depth-wise separable convolutions to reduce
tensor compute for denoising. On the other hand, our method is a novel strategy to reduce
compute given an autoencoder, and can leverage these architectures as input.

Neural Architecture Search algorithmicallysearch for ef�cient architectures. This search
is highly nonlinear, with high compute and time complexity. Several works search architec-
tures via reinforcement learning, and genetic algorithms [3, 35, 45]. Zophet al. [58] search for
transferable network blocks, surpasses manually designed architectures [14, 46]. While Caiet
al. [4] speed up exploration for better architectures via network transformation. Fuet al. [7]'s
distiller framework does adaptive search for operators types and channel widths. AutoML [30]
framework searches for channel widths for existing generators which can be computationally
expensive. In comparison, our method optimizes accuracy and weight distribution using a
penalization loss and trains in a similar time as vanilla autoencoder. Also, our approach is
complementary and can be combined with NAS.

Classi�cation based pruning methods for conditional Image generation Though, use of
classi�cation(Encoder only) pruning methods seem to be a logical �rst choice for pruning in
conditional image generation, several SOTA methods note otherwise. Yu et al. [54] conduct
extensive experiments usingstandardpruning methods – manual pruning [12] and gradual
pruning (AGP) [57] for GAN-based tasks (face generation). They note that image generated
from manual pruning is of very poor quality, whereas, the models didn't converge using
AGP [57]. [49] and [31] highlight the instability in GAN minimax training and not being
able to achieve Nash's equilibrium for retaining performance metrics (FID), on applying
classi�cation based pruning methods for conditional image generation. Similarly, Shu et
al.[43] show that applying classi�cation neural-net compression [20, 33, 34] for generators
compression suffers performance decay compared with the original generator. Based on these
arguments we conclude that a naïve application of classi�cation neural-net compression for
image generation is less suitable, and thus the need for our approach.

Neural-Net Compression (Distillation, Quantization, Pruning) Wanget al. [49]'s uni�ed
GAN compression framework uses model distillation, channel pruning, and quantization
to address this issue. Their channel pruning method is based on [33]'s batch-norm [24]

4 SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION

Figure 2: (a) & (c) shows weight distribution of Unet-64's layers after training, without and
with DECIGpenalization; (b) and (d) shows zoomed-in version of correspondingfourth layer.
(d) show the “hinge” for pruningfourth layer achieved by our method. X-axis indicates
channel # in the layer, Y-axis indicates absolute value of weights of corresponding channel.

scale parameters, and measures importance among kernels of a convolutional layer. This
dependence on batch-norm makes it inherently infeasible for architectures without batch-
norm, while we seek a more generic approach. Aguinaldoet al. [2] compress DC-GAN [39]
via knowledge distillation. Houet al. [18] explore a method to generate nets with different
channel sizes, while it leads to identity preserving image generation for face images, their
FIDs may deteriorate. Linet al. [32] propose a student-teacher learning method for interactive
photo-realistic image generation and Linet al. [31] propose a online collaborative distillation
scheme to learn intermediate features of teacher generator and discriminator to optimize the
student generator. Compared, we don't have to pre-design student network and can condense a
model using magnitude distribution plots and “hinge” modeling, Sec 3. Further, our algorithm
can be used along with student-teacher training methods for joint training and device speci�c
optimizations.

3 Method

A vanilla autoencoder generatorG learns to synthesize an imageI from an input segmentation
map,S2 f H � W � 3g. Our pix2pix-like [25] setup uses a U-net [40] backbone generator,G,
while the optimized generatorG� aims to be compute ef�cient s.t. the quality of generated
images from both generators (G;G�) is nearly equivalent, whileG� can be deployed across
diverse hardware – CPUs, (e)GPUs optimizing for latency and image quality trade-off. The
optimization condense (regularizes) �lters used convolution layers of the autoencoder (Stage
I), and later prunes least used �lters (Stage II) and �ne-tunes the pruned generator, Fig. 1.

As per, Li et al. [29] and Wenet al. [53] of the three levels for sparsity regularization,
coarsechannel-level sparsity provides a better trade-off between �exibility and ease of
deployment. It can be applied on any neural-net with convolutional layers, and generates a
sparserversion of the original model. Channel-level sparsity requires pruning all adjacent
connections associated with a particular channel, and makes it challenging to apply it directly
on a pre-trained model due to generally non-existent zero weight channels in the neural-net,
see Fig. 2 (a). To alleviate the problem of non-existent zero weight channels for sparsity
regularization, we enforce a penalization loss in the training objective. Speci�cally, we
introduce a loss function that operates on absolute value of �lter weights and systematically

SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION 5

pushes the �lter weights towards zero during training.
Unlike Liu et al. [33] that regularize added scaling factors after convolution or on adjacent

scaling factor of normalization layer, our method operates on layer weights. We observe that
using extra scaling factors not only add computational burden, but also such normalization
speci�c methods increase the complexity of the approach when dealing with new methods with
pre-activation structures and cross-connecting layers like ResNets [13], and DenseNets [22].
Further, such methods designed with batch-norm (or normalization layers in general) become
unusable when working with newer, normalization free architectures. Our loss function
operates on magnitude of channel weights, and works with such newer architectures.1

Stage I - Channel Weight RegularizationChannel pruning methods [32], utilize kernel
magnitude as the criterion for relative importance across �lters. On the other hand, when we
train a network, a per channel importance factorg, equivalent to magnitude of the weights
of the corresponding channels is introduced. We train the network weights, and optimize
the importance factor to condense the weights to as few channels as possible. This training
objective for theith layer is given by:

Li = � n
j= 1f (j) � jj Wi; j jj1 (1)

Where,n is layer # in the network,j the channel # of the convolutional �lter, andWi; j
the �lter weight of theith layer andj th sorted channel. We explore three different channel
regularization strategies withj 2 (1;n):

- Uniform feature channel regularization,f(j) = 1:0

- Linear feature channel regularization,f(j) = j

- Exponentialfeature channel regularization,f(j) = e0:01j

We have selected three different channel regularisation methods, i.e. linear, uniform and
exponential, to explore and verify the effects of relative penalisation (faster increase in
penalisation as number of channels increase for a layer) and its effects on compression and
quality.

Stage I - Layer Device Performance Regularization.GPU devices exploit tensor
compute parallelism in convolution layers and simultaneously process large number of weight
channels. CPU devices, however, carry out these operations sequentially and don't bene�t
from similar parallelism. Depending on the device and their memory allocation, relative
convolutional operation speed across different spatial resolutions and feature map sizes
differs considerably. For example, aconvolution(kernel=3, stride=2) at8� 8
resolution with512input and output channels require 7.179 milliseconds (ms) on CPU and
1.132 ms on GPU. However, same convolution at16� 16 resolution takes3� time and
1:6� time on CPU and GPU, respectively. Similarly, for aconvolution(kernel=3,
stride=2) at 128� 128resolution with input channel1, if the number of output channels
are increased from 32 to 128, the run-time for CPU gets quadrupled (4� cost) while for GPU
it remains nearly same. Based on this insight, we make the neural-net optimization device
speci�c.

For model deployment, the compute devices are usually �xed, thus we propose run-time
layer level (device-dependent) channel regularization strategy. We calculate the run-time

1A layer indicates convolutional layer in the deep neural network, where a collection of channels make a single
layer. For instance, if there is a3� 3 convolutional layer, with the input feature map of shapeH � W � M and output
feature map of shapeH � W � N, there would be totalN channels each with shape 3� 3� M.

6 SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION

Figure 3: (Left to Right) Baseline variants: Unet-{16, 32, 64}, andDECIGversions of
Unet-64 with high and low regularization.Note: While better image generation methods exist,
our emphasis is to maintain image quality given baseline autoencoders.

for each layer across a particular device, and use it as a multiplicative factorl(i) for that
layer, to calculate total penalization. Our method allows device agnostic, multiply-accumulate
(MAC) operations based, layer-level channel regularization. To this end, we calculate the
multiplicative factor of each layer based on corresponding MAC operations of that particular
layer. The penalizationLPENAL , minimax optimization [9] for a GAN is minGmaxD LGAN

objective function, and �nal objectiveLALAP
GAN are given as:

LPENAL = � n
i= 0l(i) � Li

LGAN = Ey2Y [log(D(y)]+ Ex2X [log(1� D(G(x))]

LALAP
GAN = LGAN + Ll1 + a � LPENAL (2)

Where,X corresponds to random noise distribution, whileY corresponds to real image
distribution. l1 loss (ground-truth and generated images) is used during training as well.a is
decided such that, for the �rst training iteration, ratio ofa � LPENAL andLl1 is 0.1

Stage II - Pruning and Distillation After Stage-I training, Eq 2, we obtain a model with
a considerable amount of inactivated (near zero weight) channels. Due to the penalization
loss, distinction between near zero and important channels is easily identi�able, Fig. 2(d). The
inclination point that shows the threshold between these two types of channels is identi�ed
as the “hinge”. Fig 2 shows an example resulting weight distribution plot. We sort channels
of a layer in Unet-64 model by magnitude (importance factor), and the hinge is identi�ed at
50th channel for this particular layer. This way, we do not require to take an arbitrary guess or
a global threshold [33] on the number of channels to be pruned, making the trained model
device ef�cient. After identifying the “hinge”, channels lower in magnitude than hinge channel
are pruned. Along with pruning these channels, we also remove corresponding incoming and
outgoing connections and weights across all layers and obtain a compact network with fewer –
parameters, run-time memory, and compute operations.

This hinge-based pruning has a minimal effect on the perceptual quality of generated
images because the pruned channels magnitude is far less compared to that of non-pruned
ones, sharp slope in Fig. 2(d). We also observe that,almostdeactivated �lters (Fig. 1) act as

