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Abstract

We present a novel algorithm to reduce tensor compute required by a conditional image
generation autoencoder without sacrificing quality of photo-realistic image generation.
Our method is device agnostic, and can optimize an autoencoder for a given CPU-only,
GPU compute device(s) in about normal time it takes to train an autoencoder on a generic
workstation. We achieve this via a two-stage novel strategy where, first, we condense
the channel weights, such that, as few as possible channels are used. Then, we prune the
nearly zeroed out weight activations, and fine-tune the autoencoder. To maintain image
quality, fine-tuning is done via student-teacher training, where we reuse the condensed
autoencoder as the teacher. We show performance gains for various conditional image
generation tasks: segmentation mask to face images, face images to cartoonization, and
finally CycleGAN-based model over multiple compute devices. We perform various
ablation studies to justify the claims and design choices, and achieve real-time versions of
various autoencoders on CPU-only devices while maintaining image quality, thus enabling
at-scale deployment of such autoencoders.

1 Introduction

High demand for consumer avatars, filters, and scene generation applications has led to
an increased at-scale need of photo-realistic image generation. Such applications rely on
Generative Adversarial Networks (GANSs) [9] and supervised image-to-image style trans-
fer [8, 25, 50] via autoencoders such as U-nets [40]. Technical advancements, and availability
of deep learning APIs [1, 37] has helped achieve image generation. Backends of such APIs
rely on fast tensor operations, parallelized via GPUs. However, real-time image generation
via GAN-like methods has high deployment cost due to GPU compute costs and high break-
even profitability point. Although certain edge devices are native GPUs [52] capable, they
can suffer from slow inference, quality and resolutions deterioration of generated images.
Thus, we desire a solution that can quickly optimize neural-nets for a given compute device,
without sacrificing image quality and inference times. State-of-the-art literature suggests
several approaches — neural architecture design (NAD) [19, 23], network architecture search
(NAS) [58], neural-net compression (quantization [11], distillation [38], and pruning [11, 16]).
We propose a novel net pruning algorithm that be employed along with NAD and NAS.

Typical neural-net model compression techniques focus on image classification and detec-
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Figure 1: Our method DECIG, dynamically condenses channel filter and prunes GAN-based
autoencoders for image generation. During Stage I, vanilla U-net autoencoder is trained
with penalization, where weight distribution (centre-bottom) has several resulting near-zero
value channels that can be pruned. During Stage II, the pruned network is fine-tuned in
student-teacher manner using condensed model (from Stage-I) as the teacher.

tion [15]. Applying such methods for conditional image generation is relatively less explored
and a naive application may lead to image artifacts. Shu et al. [43] propose a channel pruning
GAN compression evolutionary search algorithm, however, their method is designed for
cyclic-consistency image generation [56], and nontrivial to extend for non-cyclic consistency
GANSs [25, 41]. Shu et al. [43] show that generators compressed by classifier compression
methods [33] suffer performance decay compared to original generators. Chen et al. [5]
propose GAN compression by training efficient generators by model distillation and remove
dependency on cyclic consistency. Their student network is handcrafted and requires signifi-
cant architectural engineering for good performance.

We propose a novel strategy to create compute efficient autoencoders for a given device. We
do this by condensing neural-net channel filter weight distribution that condense filter usage,
and later, prunes least activated filters while fine-tune using student-teacher model, where,
the condensed autoencoder acts as the teacher. Our method is device agnostic, and optimizes
neural-nets for given device. This also allows for a trade-off between computation complexity,
and synthesized image quality, Fig 3. We summarize our novel contributions below:

1. A novel strategy to reduce compute costs via dynamic channel filter condensing and
pruning GAN autoencoders for image generation.

2. A filter penalization loss for better filter weight distribution for easy pruning across
layers, and detection of a “hinge” to get a minimum threshold for a particular filter
structure, obtaining compute efficient autoencoders.

3. Optimized autoencoders perform real-time inference on CPU-only, CPU-GPU compute,
with equivalent FID vs. vanilla autoencoders for conditional image generation.

2 Related Works

Conditional Image Generation Goodfellow et al. [9]’s tremendous success with image
generation led to several vision and graphics applications [27, 36, 48]. For image-to-image
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tasks, such as, segmentation masks to image generation [25, 36, 51] aim to achieve better
image quality, these methods require high-end (Nvidia’s V100) GPUs for fast inference. At-
scale use of such methods requires lower compute, and inference costs. Reducing neural-net
compute is an active area of research. While most tackle non-image generation tasks, we
explicitly aim to solve for conditional image generation. Such methods can be categorized as
(1) Neural Architecture Design, (2) Neural Architecture Search, and (3) Neural-net Compres-
sion. Our work falls under the last category; we reduce compute by designing an algorithm
that given an input autoencoder efficiently prunes filters, while maintaining generated image
quality.

Neural Architecture Design of CNNs [13, 26, 44] led to massive gains for vision tasks.
Such deep architectures are heavy on compute, even more so as autoencoders [40]. While
several lightweight architectures have been proposed [10, 19, 21, 23, 42, 47, 55], these works
exploit costly tensor blocks within architectures, and replace them with lightweight ones, or
perform tensor compute in an efficient manner to improve the performance, generally for
non-image generation. Wang et al. [52] use depth-wise separable convolutions to reduce
tensor compute for denoising. On the other hand, our method is a novel strategy to reduce
compute given an autoencoder, and can leverage these architectures as input.

Neural Architecture Search algorithmically search for efficient architectures. This search
is highly nonlinear, with high compute and time complexity. Several works search architec-
tures via reinforcement learning, and genetic algorithms [3, 35, 45]. Zoph et al. [58] search for
transferable network blocks, surpasses manually designed architectures [14, 46]. While Cai et
al. [4] speed up exploration for better architectures via network transformation. Fu et al. [7]’s
distiller framework does adaptive search for operators types and channel widths. AutoML [30]
framework searches for channel widths for existing generators which can be computationally
expensive. In comparison, our method optimizes accuracy and weight distribution using a
penalization loss and trains in a similar time as vanilla autoencoder. Also, our approach is
complementary and can be combined with NAS.

Classification based pruning methods for conditional Image generation Though, use of
classification(Encoder only) pruning methods seem to be a logical first choice for pruning in
conditional image generation, several SOTA methods note otherwise. Yu et al. [54] conduct
extensive experiments using standard pruning methods — manual pruning [12] and gradual
pruning (AGP) [57] for GAN-based tasks (face generation). They note that image generated
from manual pruning is of very poor quality, whereas, the models didn’t converge using
AGP [57]. [49] and [31] highlight the instability in GAN minimax training and not being
able to achieve Nash’s equilibrium for retaining performance metrics (FID), on applying
classification based pruning methods for conditional image generation. Similarly, Shu et
al.[43] show that applying classification neural-net compression [20, 33, 34] for generators
compression suffers performance decay compared with the original generator. Based on these
arguments we conclude that a naive application of classification neural-net compression for
image generation is less suitable, and thus the need for our approach.

Neural-Net Compression (Distillation, Quantization, Pruning) Wang et al. [49]’s unified
GAN compression framework uses model distillation, channel pruning, and quantization
to address this issue. Their channel pruning method is based on [33]’s batch-norm [24]
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Figure 2: (a) & (c) shows weight distribution of Unet-64’s layers after training, without and
with DECIG penalization; (b) and (d) shows zoomed-in version of corresponding fourth layer.
(d) show the “hinge” for pruning fourth layer achieved by our method. X-axis indicates
channel # in the layer, Y-axis indicates absolute value of weights of corresponding channel.

scale parameters, and measures importance among kernels of a convolutional layer. This
dependence on batch-norm makes it inherently infeasible for architectures without batch-
norm, while we seek a more generic approach. Aguinaldo et al. [2] compress DC-GAN [39]
via knowledge distillation. Hou et al. [18] explore a method to generate nets with different
channel sizes, while it leads to identity preserving image generation for face images, their
FIDs may deteriorate. Lin et al. [32] propose a student-teacher learning method for interactive
photo-realistic image generation and Lin ez al. [31] propose a online collaborative distillation
scheme to learn intermediate features of teacher generator and discriminator to optimize the
student generator. Compared, we don’t have to pre-design student network and can condense a
model using magnitude distribution plots and “hinge” modeling, Sec 3. Further, our algorithm
can be used along with student-teacher training methods for joint training and device specific
optimizations.

3 Method

A vanilla autoencoder generator G learns to synthesize an image | from an input segmentation
map, S € {H X W x 3}. Our pix2pix-like [25] setup uses a U-net [40] backbone generator, G,
while the optimized generator G* aims to be compute efficient s.t. the quality of generated
images from both generators (G, G*) is nearly equivalent, while G* can be deployed across
diverse hardware — CPUs, (e)GPUs optimizing for latency and image quality trade-off. The
optimization condense (regularizes) filters used convolution layers of the autoencoder (Stage
I), and later prunes least used filters (Stage II) and fine-tunes the pruned generator, Fig. 1.
As per, Li et al. [29] and Wen et al. [53] of the three levels for sparsity regularization,
coarse channel-level sparsity provides a better trade-off between flexibility and ease of
deployment. It can be applied on any neural-net with convolutional layers, and generates a
sparser version of the original model. Channel-level sparsity requires pruning all adjacent
connections associated with a particular channel, and makes it challenging to apply it directly
on a pre-trained model due to generally non-existent zero weight channels in the neural-net,
see Fig. 2 (a). To alleviate the problem of non-existent zero weight channels for sparsity
regularization, we enforce a penalization loss in the training objective. Specifically, we
introduce a loss function that operates on absolute value of filter weights and systematically
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pushes the filter weights towards zero during training.

Unlike Liu et al. [33] that regularize added scaling factors after convolution or on adjacent
scaling factor of normalization layer, our method operates on layer weights. We observe that
using extra scaling factors not only add computational burden, but also such normalization
specific methods increase the complexity of the approach when dealing with new methods with
pre-activation structures and cross-connecting layers like ResNets [13], and DenseNets [22].
Further, such methods designed with batch-norm (or normalization layers in general) become
unusable when working with newer, normalization free architectures. Our loss function
operates on magnitude of channel weights, and works with such newer architectures.'

Stage I - Channel Weight Regularization Channel pruning methods [32], utilize kernel
magnitude as the criterion for relative importance across filters. On the other hand, when we
train a network, a per channel importance factor 7, equivalent to magnitude of the weights
of the corresponding channels is introduced. We train the network weights, and optimize
the importance factor to condense the weights to as few channels as possible. This training
objective for the /" layer is given by:

Li = =0 £(j) = || Wi M

Where, n is layer # in the network, j the channel # of the convolutional filter, and W, ;
the filter weight of the i/ layer and ;" sorted channel. We explore three different channel
regularization strategies with j € (1,n):

- Uniform feature channel regularization, f(j) = 1.0

- Linear feature channel regularization, f(j) = j

- Exponential feature channel regularization, f(j) = ¢%0l/

We have selected three different channel regularisation methods, i.e. linear, uniform and
exponential, to explore and verify the effects of relative penalisation (faster increase in
penalisation as number of channels increase for a layer) and its effects on compression and
quality.

Stage I - Layer Device Performance Regularization. GPU devices exploit tensor
compute parallelism in convolution layers and simultaneously process large number of weight
channels. CPU devices, however, carry out these operations sequentially and don’t benefit
from similar parallelism. Depending on the device and their memory allocation, relative
convolutional operation speed across different spatial resolutions and feature map sizes
differs considerably. For example, a convolution (kernel=3, stride=2) at8x 8
resolution with 512 input and output channels require 7.179 milliseconds (ms) on CPU and
1.132 ms on GPU. However, same convolution at 16 x 16 resolution takes 3x time and
1.6x time on CPU and GPU, respectively. Similarly, for a convolution (kernel=3,
stride=2) at 128 x 128 resolution with input channel 1, if the number of output channels
are increased from 32 to 128, the run-time for CPU gets quadrupled (4 x cost) while for GPU
it remains nearly same. Based on this insight, we make the neural-net optimization device
specific.

For model deployment, the compute devices are usually fixed, thus we propose run-time
layer level (device-dependent) channel regularization strategy. We calculate the run-time

1A layer indicates convolutional layer in the deep neural network, where a collection of channels make a single
layer. For instance, if there is a 3 x 3 convolutional layer, with the input feature map of shape H x W x M and output
feature map of shape H x W x N, there would be total N channels each with shape 3 x 3 x M.
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Segmentation Ground Vanilla Vanilla Vanilla DECIG Unet-64 DECIG Unet-64
Mask Truth Unet-16 Unet-32 Unet-64 High reg. Low reg.
CPU (FPS) 1 70 25.9 73 25.2 16.4
GPU (FPS) 1 200 168 259 156 131
FID| 745 58.7 473 486 37.9
Params (M) | 2.62 10.46 41.83 3.74 9.5

Figure 3: (Left to Right) Baseline variants: Unet-{16, 32, 64}, and DECIG versions of
Unet-64 with high and low regularization. Note: While better image generation methods exist,
our emphasis is to maintain image quality given baseline autoencoders.

for each layer across a particular device, and use it as a multiplicative factor I(i) for that
layer, to calculate total penalization. Our method allows device agnostic, multiply-accumulate
(MAC) operations based, layer-level channel regularization. To this end, we calculate the
multiplicative factor of each layer based on corresponding MAC operations of that particular
layer. The penalization Lpgnal, minimax optimization [9] for a GAN is ming maxp Lgan

objective function, and final objective Lg5\" are given as:

LPENAL = Z?:0|(l) * L,'
Loan = Eyey[l0g(D(y)] + Exex flog(1 — D(G(x))
LeaN. = Lean +Lin + a* Lpenac (@)
Where, X' corresponds to random noise distribution, while ) corresponds to real image
distribution. 11 loss (ground-truth and generated images) is used during training as well. o is
decided such that, for the first training iteration, ratio of @ * Lpgnar and Ly is 0.1
Stage II - Pruning and Distillation After Stage-I training, Eq 2, we obtain a model with
a considerable amount of inactivated (near zero weight) channels. Due to the penalization
loss, distinction between near zero and important channels is easily identifiable, Fig. 2(d). The
inclination point that shows the threshold between these two types of channels is identified
as the “hinge”. Fig 2 shows an example resulting weight distribution plot. We sort channels
of a layer in Unet-64 model by magnitude (importance factor), and the hinge is identified at
50" channel for this particular layer. This way, we do not require to take an arbitrary guess or
a global threshold [33] on the number of channels to be pruned, making the trained model
device efficient. After identifying the “hinge”, channels lower in magnitude than hinge channel
are pruned. Along with pruning these channels, we also remove corresponding incoming and
outgoing connections and weights across all layers and obtain a compact network with fewer —
parameters, run-time memory, and compute operations.
This hinge-based pruning has a minimal effect on the perceptual quality of generated
images because the pruned channels magnitude is far less compared to that of non-pruned
ones, sharp slope in Fig. 2(d). We also observe that, almost deactivated filters (Fig. 1) act as
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Segmentation Ground Aguinaldo et al. Wang et al. DECIG - Unet-64 DECIG - Unet-64

Mask Truth 2019 2020 (high reg.) (low reg.)
CPU (FPS)
GPU (FPS)

25.9 203 252 16.4
168 142 156 131

1
1

FID| 559 526 486 37.9
1 10.46 6.72 3.74 95

Parameters (Million)

Figure 4: Comparison with state-of-art Distillation and Pruning methods: (Left to Right)
Segment Mask, G.T., Aguinaldo et al. [2], Wang et al. [49], DECIG-Unet-64 (high reg.),
DECIG-Unet-64 (low reg.)

noisy channels. Thus when pruned, the autoencoder generates images with higher perceptual
quality without further training. The minimal negative effect on perceptual quality, if any,
can be further nullified by fine-tuning the pruned network via student-teacher training, where
Stage-I trained model acts as the teacher model. Additionally, in several cases, like the
over-parameterized or low weight penalization models discussed in the subsequent section,
we find that the fine-tuned pruned network can reach higher perceptual scores than the vanilla
network. After this stage, we finally obtain the optimized generator G*.

4 Results and Ablation

We present our results, comparison and ablation results for paired and unpaired conditional
image generation tasks. Specifically, results with generator Unet-16, 32, 64, 192 variants
for pix2pix [25] and Resnet for CycleGAN for respective vanilla versions, and DECIG (ours)
optimized models. Since, the discriminator does not affect inference time, the student and
teacher discriminator structure was kept the same.

To verify the generalizability across tasks and comparisons, we test DECIG on three appli-
cations: (1) segmentation mask to face generation, (2) face to cartoonized images for pix2pix
model and (3) horse-to-zebra for CycleGAN-like model. We use CelebA-HQ dataset [28],
that contains 30K high-quality face images and corresponding pixel-level segmentation masks
face generation, and for cartoon images generation using animegan2°. We also evaluate the
optimized generator via G* using perceptual quality FID [17] score, memory consumption,
run-times, and qualitative comparisons. We use MAC layer regularization and linear f(j),
Eq. 1, feature channel regularization for experiments, unless otherwise specified and measure
the latency speed-up on Intel Xeon CPU E5-2686, and low-cost NVidia K80 GPU.

2Unet-x [25] indicates Unet autoencoder, where number of channels is x, that doubles after every strided
convolution with an upper limit of 512.
3https://github.com/bryandlee/animegan2-pytorch
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Source Image UNet-64 ResNet Shu et al. Wang et al. DECIG-ResNet
FID| 138 71.87 9 88 62.72
Flops (Giga) | 6.03G 5290 G 12,516 11.36G 109G

Memory (MB) | 160 MB 43.51 MB 10.19 MB 8.7MB 7.42MB

Figure 5: CycleGAN compression: (Left to Right) Source Image, Style transfer UNet-64,
ResNet CycleGAN, CEC [43], GAN-Sliming [49] and DECIG-ResNet, respectively.

Results & Comparisons: Face Generation Application. Fig. 3 shows results of variants
on U-net [40] architecture. Although, compared with Unet-64, miniature Unet variants (Unet-
16 and Unet-32) have fewer parameters, their generated images have several artifacts — austere
and blurry repeated patches. Images generated by our condensed generators look sharper and
more realistic with lower inference times. Our method (Fig. 3) distributes weights in each
layer, s.t., not only was it able to achieve better FID compared with corresponding vanilla
models, but also hinge-based pruning had a minimal effect on FID. After student-teacher
training, the model recovers from pruning artifacts and the resulting model has improved
FIDs by 17%, and run-time (FPS), parameters and memory improve significantly.

Inference time for DECIG-Unet generators improves 3.5x on CPU and 1.63 x on GPU.
Primary objective of high-reg version of DECIG is to enable higher model compression with
equivalent perceptual scores, compared to it’s vanilla variant, whereas, in low-reg versions
enables higher perceptual quality over compression metrics. high and low indicates the
penalization in the overall loss function. high-reg and low-reg is a relative term, we have
scaled high-reg with 0.1 to get low-reg before training. The DECIG-Unet-64 high-reg variant
achieves a real-time inference on CPU-only device and makes it feasible for cost-effective
deployment.

Results & Comparisons: CycleGAN application. We go beyond Unets, and apply
DECIG on unpaired image-to-to image translation, and use ResNet [56] as our generator,
which is more complex than a Unet due to its cross-connections, and compare with recent
SOTA methods like GAN-sliming [30]. Following [43, 49], we use GFLops, model size
(MB), and FID (between source style-transfer and target-style images) as a quantitatively
measure for the ResNet generator.

On horse-to-zebra task, Fig. 5, DECIG-ResNet achieves 5.9x reduction in model size
compared to baseline and a 30% improvement in FID score. Our methods achieves significant
improvement of 28% in FID scores compared to Wang ef al. [49] along with improved
results over compression matrices. Using high-reg version of DECIG-ResNet we achieve 33%
reduction in the number of flops and 11 x reduction in memory usage with improvements in
perceptual quality metrics, Table 7.


Citation
Citation
{Shu, Wang, Jia, Han, Chen, Xu, Tian, and Xu} 2019

Citation
Citation
{Wang, Gui, Yang, Liu, and Wang} 2020{}

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{Zhu, Park, Isola, and Efros} 2017

Citation
Citation
{Li, Lin, Ding, Liu, Zhu, and Han} 2020

Citation
Citation
{Shu, Wang, Jia, Han, Chen, Xu, Tian, and Xu} 2019

Citation
Citation
{Wang, Gui, Yang, Liu, and Wang} 2020{}

Citation
Citation
{Wang, Gui, Yang, Liu, and Wang} 2020{}


SHAH AND BHARAIJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION 9

Face Images Ground UNet-64 DECIG-UNet-64 DECIG-UNet-64 DECIG-UNet-64
Truth Linear (lowreg.)  Uniform(Stage-1) Uniform(Stage-2)
FID| 29.20 27.52 25.65 24.31
Parameters (Million) M 185M 1M 7.8M
Memory (MB) | 160 MB 96 MB 160 MB 30 MB
CPU (FPS§ 1 74 8.2 7.4 11.6

GPU (FPS

l
1 96 107 96 119

Figure 6: Face Cartoonization Compression: (Left to Right) Input, Cartoonized GT, UNet-64,
DECIG-UNet-64 Linear (low-reg), DECIG-UNet-64 Uniform, Stage I and II.

Results: Cartoonization Application. Experiments are conducted on two different
channel weight regularization approaches, i.e., Uniform and Linear, and the weighing of
penalization is controlled to get balanced improvements over both FID scores and compression
metrics. The qualitative and quantitative results of the cartoon-style transfer, together with
model statistics (FLOPs and model sizes), are shown in Fig. 6. We also show results after
only stage-I training to quantify student-teacher’s effect on our approach. Exploring improved
student-teacher methods for training is orthogonal to our work and could be leveraged for
additional improvements. For the cartoonization task, as fine-scale features are less critical,
uniform channel weight regularization performs better compared with the linear version.
DECIG-UNet performs well compared to UNet, with a 20% improvement in FID scores and
6x reduction in number of parameters. These results validate DECIG’s efficacy compared
to models trained with the conventional approach in terms of perceptual quality and model
parameter reduction.

Ablation: Overparametrization and Regularization. We evaluate our method on
overly-parametrized Unet-192 and observe its advantages on over-fit reduction. DECIG-Unet-
192 (Fig. 7(b)) typically achieves a 6 x reduction in the number of parameters vs Unet-192.
The pruned DECIG-Unet-192 achieves a lower FID score (47.3, 30% improvement) compared
to the original model’s FID (65.3). We attribute this to our penalization strategy that addresses
the over-fitting over the training set; see supplementary for qualitative results.

Ablation: Channel Weight and Layer Device Regularization Our channel weight
regularization method supports several multiplicative functions like Uniform, Linear, and
Exponential, and the corresponding quantitative predictions are shown in Tab. 1(b).

In our experiments, we observe linear f(x) as the standard strategy based on trade-off
perceptual image quality scores and run-time improvements, and uniform f(x) performs
slightly better when fine-scale features are less critical in the generation process like tasks
such as cartoonization. We also test our approach on device agnostic layer level regularization
(Tab. 1(a)). Here, FPS for model’s MAC optimized for CPU specifically (DECIG-CPU) has
better FPS on CPU device compared to model optimized for general device, see supplementary
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Unet-64 DECIG DECIG DECIG || Linear Pen. Uniform Exponential | Linear Pen.

CPU MAC (High reg.) | Penalization | Penalization | (Low reg.)
CPU (FPS) 7.3 28.6 26.1 25.2 25.2 22.5 21.9 16.4
GPU (FPS) 96 161 169 156 156 149 144 131
FID 47.3 51.48 51.61 48.6 48.6 45.61 44.46 37.9

Table 1: Comparison of Unet-64’s DECIG variants with layer weight { CPU, GPU, MAC} and
channel weight {Linear (high-reg), Uniform, Exponential, Linear (low-reg)} regularization.

Shuetal. | Wang etal. | DECIG- Vanilla DECIG - Vz\nil]z\ DECIG -
ResNet [43] [49] ResNet ResNet- 128 | ResNet- |2s Unel— 192 | Unet- 192
FID | 14881 | 139.88 120 133 CPU. fps | 0.15 s 045 25
GFlops | 5290 | 12.16 12.05 8.21 GPU.fps | 343 I8 2
P : : : g FID 522 49 7 65.26 4238
Mem. (mb) | 43.51 10.02 9.04 4.83 param 54 376 615
(@)

Figure 7: (a) Comparison with CycleGAN Zebra-to-Horse Compressmn [43, 49] (b) Baseline
conditional-GAN {Unet-192, ResNet}, and their DECIG versions.

for qualitative results.

Comparisons Summary with SOTA Pruning Methods. Aguinaldo et al. [2] uses
model distillation to train a slim student generator from the corresponding bigger teacher
network. We used Unet-64 as the teacher network and Unet-32, i.e., half slimmed channels
for every layer as the student network and train using the distillation method. We observe
slight FID improvement from vanilla Unet-32 model, however, generated results are blurry,
Fig. 4. We also implement Wang et al. [49] for vanilla Unet-64 and obtain improved results in
terms of perceptual quality (FID), parameter reduction, and memory usage compared to [2].
However, images generated from [49] have several artifacts such as, random color patterns,
illuminations and thus, quality of generated images have more artifacts that our methods,
while both networks have similar sizes and runtime, Figure 4.

5 Limitations and Conclusion

We present DECIG, a tensor compute reduction method that optimizes autoencoders for
conditional image generation and achieves near real-time inference capabilities on CPU-
only, and GPU devices. Our method achieves significant improvements over state-of-the-art
methods wrt run-time and perceptual quality for various conditional image generation tasks
— pix2pix (segmentation mask to images, images to cartoonization) and CycleGAN using
autoencoders UNet and ResNet, respectively.

Several limitations exist: Although, task specific, our method does not completely preserve
face identity attribute after compression and requires manual penalization strategy. We
also require picking the hinge during Stage-II pruning manually. In the future, we want to
explore improvements for these limitations via better perceptual losses, and introduce identity
preserving loss [6], and propose automated hinge selection via clustering, and sharp curvature
change modeling during compression aware training.
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