
SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION 1

Towards Device Efficient Conditional Image
Generation
Nisarg A. Shah
snisarg812@gmail.com

Gaurav Bharaj
first.last@gmail.com

AI Foundation
California, USA

Abstract

We present a novel algorithm to reduce tensor compute required by a conditional image
generation autoencoder without sacrificing quality of photo-realistic image generation.
Our method is device agnostic, and can optimize an autoencoder for a given CPU-only,
GPU compute device(s) in about normal time it takes to train an autoencoder on a generic
workstation. We achieve this via a two-stage novel strategy where, first, we condense
the channel weights, such that, as few as possible channels are used. Then, we prune the
nearly zeroed out weight activations, and fine-tune the autoencoder. To maintain image
quality, fine-tuning is done via student-teacher training, where we reuse the condensed
autoencoder as the teacher. We show performance gains for various conditional image
generation tasks: segmentation mask to face images, face images to cartoonization, and
finally CycleGAN-based model over multiple compute devices. We perform various
ablation studies to justify the claims and design choices, and achieve real-time versions of
various autoencoders on CPU-only devices while maintaining image quality, thus enabling
at-scale deployment of such autoencoders.

1 Introduction
High demand for consumer avatars, filters, and scene generation applications has led to
an increased at-scale need of photo-realistic image generation. Such applications rely on
Generative Adversarial Networks (GANs) [9] and supervised image-to-image style trans-
fer [8, 25, 50] via autoencoders such as U-nets [40]. Technical advancements, and availability
of deep learning APIs [1, 37] has helped achieve image generation. Backends of such APIs
rely on fast tensor operations, parallelized via GPUs. However, real-time image generation
via GAN-like methods has high deployment cost due to GPU compute costs and high break-
even profitability point. Although certain edge devices are native GPUs [52] capable, they
can suffer from slow inference, quality and resolutions deterioration of generated images.
Thus, we desire a solution that can quickly optimize neural-nets for a given compute device,
without sacrificing image quality and inference times. State-of-the-art literature suggests
several approaches – neural architecture design (NAD) [19, 23], network architecture search
(NAS) [58], neural-net compression (quantization [11], distillation [38], and pruning [11, 16]).
We propose a novel net pruning algorithm that be employed along with NAD and NAS.
Typical neural-net model compression techniques focus on image classification and detec-

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio} 2014

Citation
Citation
{Gatys, Ecker, and Bethge} 2016

Citation
Citation
{Isola, Zhu, Zhou, and Efros} 2017

Citation
Citation
{Wang, Liu, Zhu, Liu, Tao, Kautz, and Catanzaro} 2018{}

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard, etprotect unhbox voidb@x protect penalty @M {}al.} 2016

Citation
Citation
{Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Wang, Huang, Xu, Liu, Liu, and Wang} 2020{}

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Iandola, Han, Moskewicz, Ashraf, Dally, and Keutzer} 2016

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{Han, Mao, and Dally} 2015{}

Citation
Citation
{Polino, Pascanu, and Alistarh} 2018

Citation
Citation
{Han, Mao, and Dally} 2015{}

Citation
Citation
{He, Zhang, and Sun} 2017

2 SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION

lla U-net Stage I U-net Stage II U-net

Regularize Layer Filters

Pruned Deactivated Filters

Final Fine-tuned Pruned Network

(Teacher)
Stage I

 U-net

(Student)
Pruned

 U-net

Figure 1: Our method DECIG, dynamically condenses channel filter and prunes GAN-based
autoencoders for image generation. During Stage I, vanilla U-net autoencoder is trained
with penalization, where weight distribution (centre-bottom) has several resulting near-zero
value channels that can be pruned. During Stage II, the pruned network is fine-tuned in
student-teacher manner using condensed model (from Stage-I) as the teacher.

tion [15]. Applying such methods for conditional image generation is relatively less explored
and a naïve application may lead to image artifacts. Shu et al. [43] propose a channel pruning
GAN compression evolutionary search algorithm, however, their method is designed for
cyclic-consistency image generation [56], and nontrivial to extend for non-cyclic consistency
GANs [25, 41]. Shu et al. [43] show that generators compressed by classifier compression
methods [33] suffer performance decay compared to original generators. Chen et al. [5]
propose GAN compression by training efficient generators by model distillation and remove
dependency on cyclic consistency. Their student network is handcrafted and requires signifi-
cant architectural engineering for good performance.
We propose a novel strategy to create compute efficient autoencoders for a given device. We
do this by condensing neural-net channel filter weight distribution that condense filter usage,
and later, prunes least activated filters while fine-tune using student-teacher model, where,
the condensed autoencoder acts as the teacher. Our method is device agnostic, and optimizes
neural-nets for given device. This also allows for a trade-off between computation complexity,
and synthesized image quality, Fig 3. We summarize our novel contributions below:

1. A novel strategy to reduce compute costs via dynamic channel filter condensing and
pruning GAN autoencoders for image generation.

2. A filter penalization loss for better filter weight distribution for easy pruning across
layers, and detection of a “hinge” to get a minimum threshold for a particular filter
structure, obtaining compute efficient autoencoders.

3. Optimized autoencoders perform real-time inference on CPU-only, CPU-GPU compute,
with equivalent FID vs. vanilla autoencoders for conditional image generation.

2 Related Works
Conditional Image Generation Goodfellow et al. [9]’s tremendous success with image
generation led to several vision and graphics applications [27, 36, 48]. For image-to-image

Citation
Citation
{He, Liu, Wang, Hu, and Yang} 2019

Citation
Citation
{Shu, Wang, Jia, Han, Chen, Xu, Tian, and Xu} 2019

Citation
Citation
{Zhu, Park, Isola, and Efros} 2017

Citation
Citation
{Isola, Zhu, Zhou, and Efros} 2017

Citation
Citation
{Sanakoyeu, Kotovenko, Lang, and Ommer} 2018

Citation
Citation
{Shu, Wang, Jia, Han, Chen, Xu, Tian, and Xu} 2019

Citation
Citation
{Liu, Li, Shen, Huang, Yan, and Zhang} 2017

Citation
Citation
{Chen, Wang, Shu, Wen, Xu, Shi, Xu, and Xu} 2020

Citation
Citation
{Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio} 2014

Citation
Citation
{Ledig, Theis, Husz{á}r, Caballero, Cunningham, Acosta, Aitken, Tejani, Totz, Wang, etprotect unhbox voidb@x protect penalty @M {}al.} 2017

Citation
Citation
{Park, Liu, Wang, and Zhu} 2019

Citation
Citation
{Tewari, Elgharib, Bharaj, Bernard, Seidel, P{é}rez, Z{ö}llhofer, and Theobalt} 2020

SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION 3

tasks, such as, segmentation masks to image generation [25, 36, 51] aim to achieve better
image quality, these methods require high-end (Nvidia’s V100) GPUs for fast inference. At-
scale use of such methods requires lower compute, and inference costs. Reducing neural-net
compute is an active area of research. While most tackle non-image generation tasks, we
explicitly aim to solve for conditional image generation. Such methods can be categorized as
(1) Neural Architecture Design, (2) Neural Architecture Search, and (3) Neural-net Compres-
sion. Our work falls under the last category; we reduce compute by designing an algorithm
that given an input autoencoder efficiently prunes filters, while maintaining generated image
quality.

Neural Architecture Design of CNNs [13, 26, 44] led to massive gains for vision tasks.
Such deep architectures are heavy on compute, even more so as autoencoders [40]. While
several lightweight architectures have been proposed [10, 19, 21, 23, 42, 47, 55], these works
exploit costly tensor blocks within architectures, and replace them with lightweight ones, or
perform tensor compute in an efficient manner to improve the performance, generally for
non-image generation. Wang et al. [52] use depth-wise separable convolutions to reduce
tensor compute for denoising. On the other hand, our method is a novel strategy to reduce
compute given an autoencoder, and can leverage these architectures as input.

Neural Architecture Search algorithmically search for efficient architectures. This search
is highly nonlinear, with high compute and time complexity. Several works search architec-
tures via reinforcement learning, and genetic algorithms [3, 35, 45]. Zoph et al. [58] search for
transferable network blocks, surpasses manually designed architectures [14, 46]. While Cai et
al. [4] speed up exploration for better architectures via network transformation. Fu et al. [7]’s
distiller framework does adaptive search for operators types and channel widths. AutoML [30]
framework searches for channel widths for existing generators which can be computationally
expensive. In comparison, our method optimizes accuracy and weight distribution using a
penalization loss and trains in a similar time as vanilla autoencoder. Also, our approach is
complementary and can be combined with NAS.

Classification based pruning methods for conditional Image generation Though, use of
classification(Encoder only) pruning methods seem to be a logical first choice for pruning in
conditional image generation, several SOTA methods note otherwise. Yu et al. [54] conduct
extensive experiments using standard pruning methods – manual pruning [12] and gradual
pruning (AGP) [57] for GAN-based tasks (face generation). They note that image generated
from manual pruning is of very poor quality, whereas, the models didn’t converge using
AGP [57]. [49] and [31] highlight the instability in GAN minimax training and not being
able to achieve Nash’s equilibrium for retaining performance metrics (FID), on applying
classification based pruning methods for conditional image generation. Similarly, Shu et
al.[43] show that applying classification neural-net compression [20, 33, 34] for generators
compression suffers performance decay compared with the original generator. Based on these
arguments we conclude that a naïve application of classification neural-net compression for
image generation is less suitable, and thus the need for our approach.

Neural-Net Compression (Distillation, Quantization, Pruning) Wang et al. [49]’s unified
GAN compression framework uses model distillation, channel pruning, and quantization
to address this issue. Their channel pruning method is based on [33]’s batch-norm [24]

Citation
Citation
{Isola, Zhu, Zhou, and Efros} 2017

Citation
Citation
{Park, Liu, Wang, and Zhu} 2019

Citation
Citation
{Wang, Liu, Zhu, Tao, Kautz, and Catanzaro} 2018{}

Citation
Citation
{He, Zhang, Ren, and Sun} 2016{}

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2017

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{Han, Wang, Tian, Guo, Xu, and Xu} 2020

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Hu, Shen, and Sun} 2018

Citation
Citation
{Iandola, Han, Moskewicz, Ashraf, Dally, and Keutzer} 2016

Citation
Citation
{Sandler, Howard, Zhu, Zhmoginov, and Chen} 2018

Citation
Citation
{Tan and Le} 2019

Citation
Citation
{Zhang, Zhou, Lin, and Sun} 2018

Citation
Citation
{Wang, Huang, Xu, Liu, Liu, and Wang} 2020{}

Citation
Citation
{Brock, Lim, Ritchie, and Weston} 2017

Citation
Citation
{Miikkulainen, Liang, Meyerson, Rawal, Fink, Francon, Raju, Shahrzad, Navruzyan, Duffy, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Stanley and Miikkulainen} 2002

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{He, Zhang, Ren, and Sun} 2016{}

Citation
Citation
{Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, and Rabinovich} 2015

Citation
Citation
{Cai, Chen, Zhang, Yu, and Wang} 2017

Citation
Citation
{Fu, Chen, Wang, Li, Lin, and Wang} 2020

Citation
Citation
{Li, Lin, Ding, Liu, Zhu, and Han} 2020

Citation
Citation
{Yu and Pool} 2020

Citation
Citation
{Han, Pool, Tran, and Dally} 2015{}

Citation
Citation
{Zhu and Gupta} 2017

Citation
Citation
{Zhu and Gupta} 2017

Citation
Citation
{Wang, Gui, Yang, Liu, and Wang} 2020{}

Citation
Citation
{Li, Wu, Xiao, Chao, Mao, and Ji} 2021

Citation
Citation
{Shu, Wang, Jia, Han, Chen, Xu, Tian, and Xu} 2019

Citation
Citation
{Hu, Peng, Tai, and Tang} 2016

Citation
Citation
{Liu, Li, Shen, Huang, Yan, and Zhang} 2017

Citation
Citation
{Luo, Wu, and Lin} 2017

Citation
Citation
{Wang, Gui, Yang, Liu, and Wang} 2020{}

Citation
Citation
{Liu, Li, Shen, Huang, Yan, and Zhang} 2017

Citation
Citation
{Ioffe and Szegedy} 2015

https://www.nvidia.com/en-us/data-center/v100

4 SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION

Layer channel #
(d)

Hinge

Hinge

Layer channel #

Ab
s

W
ei

gh
ts

 V
al

ue

Ab
s

W
ei

gh
ts

 V
al

ue

(b)(a)
(After) Layer channel #

(c)
(Before) Layer channel #

Figure 2: (a) & (c) shows weight distribution of Unet-64’s layers after training, without and
with DECIG penalization; (b) and (d) shows zoomed-in version of corresponding fourth layer.
(d) show the “hinge” for pruning fourth layer achieved by our method. X-axis indicates
channel # in the layer, Y-axis indicates absolute value of weights of corresponding channel.

scale parameters, and measures importance among kernels of a convolutional layer. This
dependence on batch-norm makes it inherently infeasible for architectures without batch-
norm, while we seek a more generic approach. Aguinaldo et al. [2] compress DC-GAN [39]
via knowledge distillation. Hou et al. [18] explore a method to generate nets with different
channel sizes, while it leads to identity preserving image generation for face images, their
FIDs may deteriorate. Lin et al. [32] propose a student-teacher learning method for interactive
photo-realistic image generation and Lin et al. [31] propose a online collaborative distillation
scheme to learn intermediate features of teacher generator and discriminator to optimize the
student generator. Compared, we don’t have to pre-design student network and can condense a
model using magnitude distribution plots and “hinge” modeling, Sec 3. Further, our algorithm
can be used along with student-teacher training methods for joint training and device specific
optimizations.

3 Method
A vanilla autoencoder generator G learns to synthesize an image I from an input segmentation
map, S ∈ {H ×W ×3}. Our pix2pix-like [25] setup uses a U-net [40] backbone generator, G,
while the optimized generator G∗ aims to be compute efficient s.t. the quality of generated
images from both generators (G,G∗) is nearly equivalent, while G∗ can be deployed across
diverse hardware – CPUs, (e)GPUs optimizing for latency and image quality trade-off. The
optimization condense (regularizes) filters used convolution layers of the autoencoder (Stage
I), and later prunes least used filters (Stage II) and fine-tunes the pruned generator, Fig. 1.

As per, Li et al. [29] and Wen et al. [53] of the three levels for sparsity regularization,
coarse channel-level sparsity provides a better trade-off between flexibility and ease of
deployment. It can be applied on any neural-net with convolutional layers, and generates a
sparser version of the original model. Channel-level sparsity requires pruning all adjacent
connections associated with a particular channel, and makes it challenging to apply it directly
on a pre-trained model due to generally non-existent zero weight channels in the neural-net,
see Fig. 2 (a). To alleviate the problem of non-existent zero weight channels for sparsity
regularization, we enforce a penalization loss in the training objective. Specifically, we
introduce a loss function that operates on absolute value of filter weights and systematically

Citation
Citation
{Aguinaldo, Chiang, Gain, Patil, Pearson, and Feizi} 2019

Citation
Citation
{Radford, Metz, and Chintala} 2015

Citation
Citation
{Hou, Yuan, Huang, Shen, Cheng, and Wang} 2020

Citation
Citation
{Lin, Zhang, Ganz, Han, and Zhu} 2021

Citation
Citation
{Li, Wu, Xiao, Chao, Mao, and Ji} 2021

Citation
Citation
{Isola, Zhu, Zhou, and Efros} 2017

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{Li, Kadav, Durdanovic, Samet, and Graf} 2016

Citation
Citation
{Wen, Wu, Wang, Chen, and Li} 2016

SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION 5

pushes the filter weights towards zero during training.
Unlike Liu et al. [33] that regularize added scaling factors after convolution or on adjacent

scaling factor of normalization layer, our method operates on layer weights. We observe that
using extra scaling factors not only add computational burden, but also such normalization
specific methods increase the complexity of the approach when dealing with new methods with
pre-activation structures and cross-connecting layers like ResNets [13], and DenseNets [22].
Further, such methods designed with batch-norm (or normalization layers in general) become
unusable when working with newer, normalization free architectures. Our loss function
operates on magnitude of channel weights, and works with such newer architectures.1

Stage I - Channel Weight Regularization Channel pruning methods [32], utilize kernel
magnitude as the criterion for relative importance across filters. On the other hand, when we
train a network, a per channel importance factor γ , equivalent to magnitude of the weights
of the corresponding channels is introduced. We train the network weights, and optimize
the importance factor to condense the weights to as few channels as possible. This training
objective for the ith layer is given by:

Li = Σn
j=1f(j)∗ ||Wi, j||1 (1)

Where, n is layer # in the network, j the channel # of the convolutional filter, and Wi, j
the filter weight of the ith layer and jth sorted channel. We explore three different channel
regularization strategies with j ∈ (1,n):

- Uniform feature channel regularization, f(j) = 1.0

- Linear feature channel regularization, f(j) = j

- Exponential feature channel regularization, f(j) = e0.01 j

We have selected three different channel regularisation methods, i.e. linear, uniform and
exponential, to explore and verify the effects of relative penalisation (faster increase in
penalisation as number of channels increase for a layer) and its effects on compression and
quality.

Stage I - Layer Device Performance Regularization. GPU devices exploit tensor
compute parallelism in convolution layers and simultaneously process large number of weight
channels. CPU devices, however, carry out these operations sequentially and don’t benefit
from similar parallelism. Depending on the device and their memory allocation, relative
convolutional operation speed across different spatial resolutions and feature map sizes
differs considerably. For example, a convolution(kernel=3, stride=2) at 8×8
resolution with 512 input and output channels require 7.179 milliseconds (ms) on CPU and
1.132 ms on GPU. However, same convolution at 16× 16 resolution takes 3× time and
1.6× time on CPU and GPU, respectively. Similarly, for a convolution(kernel=3,
stride=2) at 128×128 resolution with input channel 1, if the number of output channels
are increased from 32 to 128, the run-time for CPU gets quadrupled (4× cost) while for GPU
it remains nearly same. Based on this insight, we make the neural-net optimization device
specific.

For model deployment, the compute devices are usually fixed, thus we propose run-time
layer level (device-dependent) channel regularization strategy. We calculate the run-time

1A layer indicates convolutional layer in the deep neural network, where a collection of channels make a single
layer. For instance, if there is a 3×3 convolutional layer, with the input feature map of shape H ×W ×M and output
feature map of shape H ×W ×N, there would be total N channels each with shape 3×3×M.

Citation
Citation
{Liu, Li, Shen, Huang, Yan, and Zhang} 2017

Citation
Citation
{He, Zhang, Ren, and Sun} 2016{}

Citation
Citation
{Huang, Liu, Van Derprotect unhbox voidb@x protect penalty @M {}Maaten, and Weinberger} 2017

Citation
Citation
{Lin, Zhang, Ganz, Han, and Zhu} 2021

6 SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION

Segmentation
Mask

CPU (FPS) ↑
GPU (FPS) ↑

FID ↓
Params (M) ↓

Ground
Truth

Vanilla
Unet-16

70
200
74.5
2.62

Vanilla
Unet-32

25.9
168
58.7

10.46

Vanilla
Unet-64

7.3
25.9
47.3

41.83

DECIG Unet-64
High reg.

25.2
156
48.6
3.74

DECIG Unet-64
Low reg.

16.4
131
37.9
9.5

Figure 3: (Left to Right) Baseline variants: Unet-{16, 32, 64}, and DECIG versions of
Unet-64 with high and low regularization. Note: While better image generation methods exist,
our emphasis is to maintain image quality given baseline autoencoders.

for each layer across a particular device, and use it as a multiplicative factor l(i) for that
layer, to calculate total penalization. Our method allows device agnostic, multiply-accumulate
(MAC) operations based, layer-level channel regularization. To this end, we calculate the
multiplicative factor of each layer based on corresponding MAC operations of that particular
layer. The penalization LPENAL, minimax optimization [9] for a GAN is minG maxDLGAN
objective function, and final objective LALAPGAN are given as:

LPENAL = Σn
i=0l(i)∗Li

LGAN = Ey∈Y [log(D(y)]+Ex∈X [log(1−D(G(x))]

LALAPGAN = LGAN+Ll1+α ∗LPENAL (2)

Where, X corresponds to random noise distribution, while Y corresponds to real image
distribution. l1 loss (ground-truth and generated images) is used during training as well. α is
decided such that, for the first training iteration, ratio of α ∗LPENAL and Ll1 is 0.1

Stage II - Pruning and Distillation After Stage-I training, Eq 2, we obtain a model with
a considerable amount of inactivated (near zero weight) channels. Due to the penalization
loss, distinction between near zero and important channels is easily identifiable, Fig. 2(d). The
inclination point that shows the threshold between these two types of channels is identified
as the “hinge”. Fig 2 shows an example resulting weight distribution plot. We sort channels
of a layer in Unet-64 model by magnitude (importance factor), and the hinge is identified at
50th channel for this particular layer. This way, we do not require to take an arbitrary guess or
a global threshold [33] on the number of channels to be pruned, making the trained model
device efficient. After identifying the “hinge”, channels lower in magnitude than hinge channel
are pruned. Along with pruning these channels, we also remove corresponding incoming and
outgoing connections and weights across all layers and obtain a compact network with fewer –
parameters, run-time memory, and compute operations.

This hinge-based pruning has a minimal effect on the perceptual quality of generated
images because the pruned channels magnitude is far less compared to that of non-pruned
ones, sharp slope in Fig. 2(d). We also observe that, almost deactivated filters (Fig. 1) act as

Citation
Citation
{Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio} 2014

Citation
Citation
{Liu, Li, Shen, Huang, Yan, and Zhang} 2017

SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION 7

Segmentation
Mask

↑
↑
↓
↓

Ground
Truth

Aguinaldo et al.
2019

25.9
168

Wang et al.
2020

DECIG - Unet-64
(high reg.)

25.2
156

3.74

DECIG - Unet-64
(low reg.)

37.9

Figure 4: Comparison with state-of-art Distillation and Pruning methods: (Left to Right)
Segment Mask, G.T., Aguinaldo et al. [2], Wang et al. [49], DECIG-Unet-64 (high reg.),
DECIG-Unet-64 (low reg.)

noisy channels. Thus when pruned, the autoencoder generates images with higher perceptual
quality without further training. The minimal negative effect on perceptual quality, if any,
can be further nullified by fine-tuning the pruned network via student-teacher training, where
Stage-I trained model acts as the teacher model. Additionally, in several cases, like the
over-parameterized or low weight penalization models discussed in the subsequent section,
we find that the fine-tuned pruned network can reach higher perceptual scores than the vanilla
network. After this stage, we finally obtain the optimized generator G∗.

4 Results and Ablation
We present our results, comparison and ablation results for paired and unpaired conditional
image generation tasks. Specifically, results with generator Unet-16, 32, 64, 192 variants 2

for pix2pix [25] and Resnet for CycleGAN for respective vanilla versions, and DECIG (ours)
optimized models. Since, the discriminator does not affect inference time, the student and
teacher discriminator structure was kept the same.

To verify the generalizability across tasks and comparisons, we test DECIG on three appli-
cations: (1) segmentation mask to face generation, (2) face to cartoonized images for pix2pix
model and (3) horse-to-zebra for CycleGAN-like model. We use CelebA-HQ dataset [28],
that contains 30K high-quality face images and corresponding pixel-level segmentation masks
face generation, and for cartoon images generation using animegan23. We also evaluate the
optimized generator via G∗ using perceptual quality FID [17] score, memory consumption,
run-times, and qualitative comparisons. We use MAC layer regularization and linear f(j),
Eq. 1, feature channel regularization for experiments, unless otherwise specified and measure
the latency speed-up on Intel Xeon CPU E5-2686, and low-cost NVidia K80 GPU.

2Unet-x [25] indicates Unet autoencoder, where number of channels is x, that doubles after every strided
convolution with an upper limit of 512.

3https://github.com/bryandlee/animegan2-pytorch

Citation
Citation
{Aguinaldo, Chiang, Gain, Patil, Pearson, and Feizi} 2019

Citation
Citation
{Wang, Gui, Yang, Liu, and Wang} 2020{}

Citation
Citation
{Isola, Zhu, Zhou, and Efros} 2017

Citation
Citation
{Lee, Liu, Wu, and Luo} 2020

Citation
Citation
{Heusel, Ramsauer, Unterthiner, Nessler, and Hochreiter} 2017

Citation
Citation
{Isola, Zhu, Zhou, and Efros} 2017

https://github.com/bryandlee/animegan2-pytorch

8 SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION

Source Image
FID ↓

Flops (Giga) ↓
Memory (MB) ↓

UNet-64
138

6.03 G
160 MB

ResNet
71.87

52.90 G
43.51 MB

Wang et al.
88

11.36 G
8.7 MB

DECIG-ResNet
62.72
10.9 G

7.42 MB

Shu et al.
96

12.51 G
10.19 MB

Figure 5: CycleGAN compression: (Left to Right) Source Image, Style transfer UNet-64,
ResNet CycleGAN, CEC [43], GAN-Sliming [49] and DECIG-ResNet, respectively.

Results & Comparisons: Face Generation Application. Fig. 3 shows results of variants
on U-net [40] architecture. Although, compared with Unet-64, miniature Unet variants (Unet-
16 and Unet-32) have fewer parameters, their generated images have several artifacts – austere
and blurry repeated patches. Images generated by our condensed generators look sharper and
more realistic with lower inference times. Our method (Fig. 3) distributes weights in each
layer, s.t., not only was it able to achieve better FID compared with corresponding vanilla
models, but also hinge-based pruning had a minimal effect on FID. After student-teacher
training, the model recovers from pruning artifacts and the resulting model has improved
FIDs by 17%, and run-time (FPS), parameters and memory improve significantly.

Inference time for DECIG-Unet generators improves 3.5× on CPU and 1.63× on GPU.
Primary objective of high-reg version of DECIG is to enable higher model compression with
equivalent perceptual scores, compared to it’s vanilla variant, whereas, in low-reg versions
enables higher perceptual quality over compression metrics. high and low indicates the
penalization in the overall loss function. high-reg and low-reg is a relative term, we have
scaled high-reg with 0.1 to get low-reg before training. The DECIG-Unet-64 high-reg variant
achieves a real-time inference on CPU-only device and makes it feasible for cost-effective
deployment.

Results & Comparisons: CycleGAN application. We go beyond Unets, and apply
DECIG on unpaired image-to-to image translation, and use ResNet [56] as our generator,
which is more complex than a Unet due to its cross-connections, and compare with recent
SOTA methods like GAN-sliming [30]. Following [43, 49], we use GFLops, model size
(MB), and FID (between source style-transfer and target-style images) as a quantitatively
measure for the ResNet generator.

On horse-to-zebra task, Fig. 5, DECIG-ResNet achieves 5.9× reduction in model size
compared to baseline and a 30% improvement in FID score. Our methods achieves significant
improvement of 28% in FID scores compared to Wang et al. [49] along with improved
results over compression matrices. Using high-reg version of DECIG-ResNet we achieve 33%
reduction in the number of flops and 11× reduction in memory usage with improvements in
perceptual quality metrics, Table 7.

Citation
Citation
{Shu, Wang, Jia, Han, Chen, Xu, Tian, and Xu} 2019

Citation
Citation
{Wang, Gui, Yang, Liu, and Wang} 2020{}

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{Zhu, Park, Isola, and Efros} 2017

Citation
Citation
{Li, Lin, Ding, Liu, Zhu, and Han} 2020

Citation
Citation
{Shu, Wang, Jia, Han, Chen, Xu, Tian, and Xu} 2019

Citation
Citation
{Wang, Gui, Yang, Liu, and Wang} 2020{}

Citation
Citation
{Wang, Gui, Yang, Liu, and Wang} 2020{}

SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION 9

Face Images

FID ↓
Parameters (Million) ↓

Memory (MB) ↓
CPU (FPS) ↑
GPU (FPS) ↑

Ground
Truth

UNet-64

29.20
41 M

160 MB
7.4
96

DECIG-UNet-64
Linear (low reg.)

27.52
18.5 M
96 MB

8.2
107

DECIG-UNet-64
Uniform(Stage-1)

25.65
41 M

160 MB
7.4
96

DECIG-UNet-64
Uniform(Stage-2)

24.31
7.8 M
30 MB
11.6
119

↑

Figure 6: Face Cartoonization Compression: (Left to Right) Input, Cartoonized GT, UNet-64,
DECIG-UNet-64 Linear (low-reg), DECIG-UNet-64 Uniform, Stage I and II.

Results: Cartoonization Application. Experiments are conducted on two different
channel weight regularization approaches, i.e., Uniform and Linear, and the weighing of
penalization is controlled to get balanced improvements over both FID scores and compression
metrics. The qualitative and quantitative results of the cartoon-style transfer, together with
model statistics (FLOPs and model sizes), are shown in Fig. 6. We also show results after
only stage-I training to quantify student-teacher’s effect on our approach. Exploring improved
student-teacher methods for training is orthogonal to our work and could be leveraged for
additional improvements. For the cartoonization task, as fine-scale features are less critical,
uniform channel weight regularization performs better compared with the linear version.
DECIG-UNet performs well compared to UNet, with a 20% improvement in FID scores and
6× reduction in number of parameters. These results validate DECIG’s efficacy compared
to models trained with the conventional approach in terms of perceptual quality and model
parameter reduction.

Ablation: Overparametrization and Regularization. We evaluate our method on
overly-parametrized Unet-192 and observe its advantages on over-fit reduction. DECIG-Unet-
192 (Fig. 7(b)) typically achieves a 6× reduction in the number of parameters vs Unet-192.
The pruned DECIG-Unet-192 achieves a lower FID score (47.3, 30% improvement) compared
to the original model’s FID (65.3). We attribute this to our penalization strategy that addresses
the over-fitting over the training set; see supplementary for qualitative results.

Ablation: Channel Weight and Layer Device Regularization Our channel weight
regularization method supports several multiplicative functions like Uniform, Linear, and
Exponential, and the corresponding quantitative predictions are shown in Tab. 1(b).

In our experiments, we observe linear f(x) as the standard strategy based on trade-off
perceptual image quality scores and run-time improvements, and uniform f(x) performs
slightly better when fine-scale features are less critical in the generation process like tasks
such as cartoonization. We also test our approach on device agnostic layer level regularization
(Tab. 1(a)). Here, FPS for model’s MAC optimized for CPU specifically (DECIG-CPU) has
better FPS on CPU device compared to model optimized for general device, see supplementary

10 SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION

Unet-64
DECIG

CPU
DECIG
GPU

DECIG
MAC

Linear Pen.
(High reg.)

Uniform
Penalization

Exponential
Penalization

Linear Pen.
(Low reg.)

CPU (FPS) 7.3 28.6 26.1 25.2 25.2 22.5 21.9 16.4
GPU (FPS) 96 161 169 156 156 149 144 131

FID 47.3 51.48 51.61 48.6 48.6 45.61 44.46 37.9

Table 1: Comparison of Unet-64’s DECIG variants with layer weight {CPU, GPU, MAC} and
channel weight {Linear (high-reg), Uniform, Exponential, Linear (low-reg)} regularization.

ResNet
Shu et al.

[43]
Wang et al.

[49]
DECIG-
ResNet

FID 148.81 139.88 120 133
GFlops 52.90 12.16 12.05 8.21

Mem. (mb) 43.51 10.02 9.04 4.83

(a)

Vanilla
ResNet- 128

DECIG -
ResNet- 128

Vanilla
Unet- 192

DECIG -
Unet- 192

CPU, fps 0.15 0.63 0.45 2.5
GPU, fps 3.43 6.1 7.8 25
FID 52.2 49.7 65.26 42.8
param 54 4.9 376 61.5

(b)
Figure 7: (a) Comparison with CycleGAN Zebra-to-Horse Compression [43, 49] (b) Baseline
conditional-GAN {Unet-192, ResNet}, and their DECIG versions.

for qualitative results.

Comparisons Summary with SOTA Pruning Methods. Aguinaldo et al. [2] uses
model distillation to train a slim student generator from the corresponding bigger teacher
network. We used Unet-64 as the teacher network and Unet-32, i.e., half slimmed channels
for every layer as the student network and train using the distillation method. We observe
slight FID improvement from vanilla Unet-32 model, however, generated results are blurry,
Fig. 4. We also implement Wang et al. [49] for vanilla Unet-64 and obtain improved results in
terms of perceptual quality (FID), parameter reduction, and memory usage compared to [2].
However, images generated from [49] have several artifacts such as, random color patterns,
illuminations and thus, quality of generated images have more artifacts that our methods,
while both networks have similar sizes and runtime, Figure 4.

5 Limitations and Conclusion

We present DECIG, a tensor compute reduction method that optimizes autoencoders for
conditional image generation and achieves near real-time inference capabilities on CPU-
only, and GPU devices. Our method achieves significant improvements over state-of-the-art
methods wrt run-time and perceptual quality for various conditional image generation tasks
– pix2pix (segmentation mask to images, images to cartoonization) and CycleGAN using
autoencoders UNet and ResNet, respectively.
Several limitations exist: Although, task specific, our method does not completely preserve
face identity attribute after compression and requires manual penalization strategy. We
also require picking the hinge during Stage-II pruning manually. In the future, we want to
explore improvements for these limitations via better perceptual losses, and introduce identity
preserving loss [6], and propose automated hinge selection via clustering, and sharp curvature
change modeling during compression aware training.

Citation
Citation
{Shu, Wang, Jia, Han, Chen, Xu, Tian, and Xu} 2019

Citation
Citation
{Wang, Gui, Yang, Liu, and Wang} 2020{}

Citation
Citation
{Shu, Wang, Jia, Han, Chen, Xu, Tian, and Xu} 2019

Citation
Citation
{Wang, Gui, Yang, Liu, and Wang} 2020{}

Citation
Citation
{Aguinaldo, Chiang, Gain, Patil, Pearson, and Feizi} 2019

Citation
Citation
{Wang, Gui, Yang, Liu, and Wang} 2020{}

Citation
Citation
{Aguinaldo, Chiang, Gain, Patil, Pearson, and Feizi} 2019

Citation
Citation
{Wang, Gui, Yang, Liu, and Wang} 2020{}

Citation
Citation
{Deng, Guo, Xue, and Zafeiriou} 2019

SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION 11

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), pages 265–283, 2016.

[2] Angeline Aguinaldo, Ping-Yeh Chiang, Alex Gain, Ameya Patil, Kolten Pearson,
and Soheil Feizi. Compressing gans using knowledge distillation. arXiv preprint
arXiv:1902.00159, 2019.

[3] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot
model architecture search through hypernetworks. arXiv preprint arXiv:1708.05344,
2017.

[4] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Reinforcement learning
for architecture search by network transformation. arXiv preprint arXiv:1707.04873, 4,
2017.

[5] Hanting Chen, Yunhe Wang, Han Shu, Changyuan Wen, Chunjing Xu, Boxin Shi,
Chao Xu, and Chang Xu. Distilling portable generative adversarial networks for image
translation. In Proceedings of the AAAI Conference on Artificial Intelligence, 2020.

[6] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angu-
lar margin loss for deep face recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4690–4699, 2019.

[7] Yonggan Fu, Wuyang Chen, Haotao Wang, Haoran Li, Yingyan Lin, and Zhangyang
Wang. Autogan-distiller: Searching to compress generative adversarial networks. arXiv
preprint arXiv:2006.08198, 2020.

[8] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using
convolutional neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2414–2423, 2016.

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances
in neural information processing systems, 27, 2014.

[10] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, and Chang Xu. Ghostnet:
More features from cheap operations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1580–1589, 2020.

[11] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[12] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connec-
tions for efficient neural network. Advances in neural information processing systems,
28, 2015.

12 SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. In European conference on computer vision, pages 630–645. Springer,
2016.

[15] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric
median for deep convolutional neural networks acceleration. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4340–4349,
2019.

[16] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep
neural networks. In Proceedings of the IEEE international conference on computer
vision, pages 1389–1397, 2017.

[17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. Gans trained by a two time-scale update rule converge to a local nash
equilibrium. Advances in neural information processing systems, 30, 2017.

[18] Liang Hou, Zehuan Yuan, Lei Huang, Huawei Shen, Xueqi Cheng, and Changhu Wang.
Slimmable generative adversarial networks. arXiv preprint arXiv:2012.05660, 2020.

[19] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, To-
bias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[20] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A
data-driven neuron pruning approach towards efficient deep architectures. arXiv preprint
arXiv:1607.03250, 2016.

[21] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 7132–7141, 2018.

[22] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

[23] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally,
and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and<
0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

[24] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on machine
learning, pages 448–456. PMLR, 2015.

[25] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image transla-
tion with conditional adversarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–1134, 2017.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION 13

[27] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al.
Photo-realistic single image super-resolution using a generative adversarial network. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
4681–4690, 2017.

[28] Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. Maskgan: Towards diverse
and interactive facial image manipulation. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

[29] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning
filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[30] Muyang Li, Ji Lin, Yaoyao Ding, Zhijian Liu, Jun-Yan Zhu, and Song Han. Gan
compression: Efficient architectures for interactive conditional gans. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 5284–5294,
2020.

[31] Shaojie Li, Jie Wu, Xuefeng Xiao, Fei Chao, Xudong Mao, and Rongrong Ji. Revisiting
discriminator in gan compression: A generator-discriminator cooperative compression
scheme. Advances in Neural Information Processing Systems, 34, 2021.

[32] Ji Lin, Richard Zhang, Frieder Ganz, Song Han, and Jun-Yan Zhu. Anycost gans for
interactive image synthesis and editing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14986–14996, 2021.

[33] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui
Zhang. Learning efficient convolutional networks through network slimming. In
Proceedings of the IEEE international conference on computer vision, pages 2736–2744,
2017.

[34] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for
deep neural network compression. In Proceedings of the IEEE international conference
on computer vision, pages 5058–5066, 2017.

[35] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink, Olivier
Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, et al. Evolving
deep neural networks. In Artificial intelligence in the age of neural networks and brain
computing, pages 293–312. Elsevier, 2019.

[36] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image
synthesis with spatially-adaptive normalization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2337–2346, 2019.

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. Advances in neural
information processing systems, 32:8026–8037, 2019.

[38] Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation
and quantization. arXiv preprint arXiv:1802.05668, 2018.

14 SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION

[39] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[40] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[41] Artsiom Sanakoyeu, Dmytro Kotovenko, Sabine Lang, and Bjorn Ommer. A style-aware
content loss for real-time hd style transfer. In proceedings of the European conference
on computer vision (ECCV), pages 698–714, 2018.

[42] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4510–4520, 2018.

[43] Han Shu, Yunhe Wang, Xu Jia, Kai Han, Hanting Chen, Chunjing Xu, Qi Tian, and
Chang Xu. Co-evolutionary compression for unpaired image translation. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 3235–3244,
2019.

[44] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[45] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augment-
ing topologies. Evolutionary computation, 10(2):99–127, 2002.

[46] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1–9, 2015.

[47] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In International Conference on Machine Learning, pages 6105–6114.
PMLR, 2019.

[48] Ayush Tewari, Mohamed Elgharib, Gaurav Bharaj, Florian Bernard, Hans-Peter Seidel,
Patrick Pérez, Michael Zöllhofer, and Christian Theobalt. Stylerig: Rigging stylegan for
3d control over portrait images, cvpr 2020. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, june 2020.

[49] Haotao Wang, Shupeng Gui, Haichuan Yang, Ji Liu, and Zhangyang Wang. Gan slim-
ming: All-in-one gan compression by a unified optimization framework. In European
Conference on Computer Vision, pages 54–73. Springer, 2020.

[50] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao, Jan Kautz, and
Bryan Catanzaro. Video-to-video synthesis. arXiv preprint arXiv:1808.06601, 2018.

[51] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. High-resolution image synthesis and semantic manipulation with conditional
gans. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 8798–8807, 2018.

SHAH AND BHARAJ: DECIG: DEVICE EFFICIENT CONDITIONAL IMAGE GENERATION 15

[52] Yuzhi Wang, Haibin Huang, Qin Xu, Jiaming Liu, Yiqun Liu, and Jue Wang. Practical
deep raw image denoising on mobile devices. In European Conference on Computer
Vision, pages 1–16. Springer, 2020.

[53] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured
sparsity in deep neural networks. Advances in neural information processing systems,
29:2074–2082, 2016.

[54] Chong Yu and Jeff Pool. Self-supervised generative adversarial compression. Advances
in Neural Information Processing Systems, 33:8235–8246, 2020.

[55] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely
efficient convolutional neural network for mobile devices. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 6848–6856, 2018.

[56] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–2232, 2017.

[57] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of
pruning for model compression. arXiv preprint arXiv:1710.01878, 2017.

[58] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8697–8710, 2018.

