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Abstract

Group Fisher Pruning is a powerful gradient-based channel pruning method for con-
volutional neural networks. Even though it provides excellent convenience for allocating
sparsity over layers with strong effectiveness, the cost of its pruning process is signifi-
cantly expensive for large neural networks. In addition, it was proposed to handle neu-
ral networks having residual connections, but it still cannot handle concatenation-type
connections like DenseNet. These drawbacks make Group Fisher Pruning hard to be uti-
lized for somewhat large or complex neural networks. Motivated by them, we propose
an improved method based on Group Fisher Pruning for efficiency and applicability.
For efficiency, we parameterize the number of pruned channels at each pruning step and
demonstrate that it can be a much larger value than one. We devise a formal algorithm for
applicability to prune DenseNet-style neural networks. In addition, we devise a knowl-
edge distillation-based channel importance scoring scheme that can work for label-free
channel pruning, which is a crucial task for exploiting unlabeled data from edge devices.
To demonstrate the superiority of our method, we conduct extensive experiments dealing
with label-free channel pruning. Our method prunes neural networks at most two or-
ders of magnitude faster than Group Fisher Pruning with comparable accuracy. It should
be noticed that our method does not require any label for pruning and retraining while
Group Fisher Pruning does.

1 Introduction
Finding efficient neural networks while minimizing accuracy loss has been one of the fun-
damental topics in deep learning. This topic is especially essential to deploy neural network
models into various edge devices with limited resources, and there are many recent works
for handling it [4, 9, 12, 15, 16, 18, 26, 28].

Group Fisher Pruning is an effective channel pruning method in this line of research [12].
It selects channels to prune based on their gradients with training data and normalization
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in terms of FLOPs or memory reduction. Due to this feature, we can compare channels
globally across layers so that we do not need to struggle to additionally find the optimal
layer-wise sparsity. In addition, Group Fisher Pruning is the first method to be designed
to handle neural networks containing residual connections like ResNet programmatically.
Despite these merits, Group Fisher Pruning suffers from expensive pruning costs because it
prunes a channel one by one with accumulated gradients through several training iterations.
Thus, it would not be preferred if we wanted to compress relatively large neural networks.

This paper mainly focuses on handling label-free channel pruning, which is an essential
task for on-device AI because most data gathered from edge devices are unlabeled. There
are many existing works [13, 23, 27] exploiting such unlabeled data to improve the accuracy
of a model. Similarly, we want to exploit unlabeled data for pruned models and see how
much they affect the accuracy.
Contributions. This paper aims to improve Group Fisher Pruning in terms of efficiency and
applicability for label-free channel pruning. The contributions are as follows.

• We propose an algorithm for handling DenseNet-style skip connections for channel prun-
ing. Especially, the algorithm correctly finds convolutional layers sharing coupled output
channels through residual connections and DenseNet-style skip connections. The supple-
mental material provides the formal algorithm description for space limitation.

• We first introduce a simple parameterization technique for reducing the pruning costs of
Group Fisher Pruning. We formulate how to exploit knowledge distillation for Group
Fisher Pruning for effective label-free channel pruning. In addition, we propose an effec-
tive selection method for positions where distillation occurs.

• We conduct extensive experiments with large and small image classification tasks and
neural network models, each of which has residual or skip connections. The proposed
method outperforms Group Fisher Pruning in terms of pruning costs with comparable
compression performance, even if the ground truth labels are unavailable.

2 Related Work
Channel Pruning. Channel pruning is one of the powerful concepts to achieve a lightweight
neural network model from a large and effective model. Most existing works for channel
pruning did not focus on adequately handling coupled output channels by residual connec-
tions [14, 18, 19, 24, 31]. Luo and Wu [15] discovered the importance of pruning coupled
channels by residual connections and proposed an effective way of pruning them. However,
they did not propose how to find such coupled channels in a programmatic way. Liu et al.
[12] proposed a grouping method to find layers sharing coupled output channels. In addi-
tion to it, they proposed an effective method to prune coupled channels with gradient-based
channel importance. Since these two methods are designed to handle residual connections,
we will compare our method with them in the experiments.
Few Sample Distillation. For label-free pruning and retraining, block-level knowledge dis-
tillation methods were proposed [10, 20]. These methods deal with blocks, each of which
contains multiple layers for label-free pruning like ours, but they do not deal with how to
make blocks from a model. In addition, even if they can be used for retraining a compressed
model by our method, we did not use them because we wanted to focus attentively on the
effectiveness of the layer-level topology.
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3 Algorithm

3.1 Background

Our pruning method consists of three steps, as depicted in Figure 1. Given a neural network
model, the method first adds a gate layer having channel-wise gates after each convolutional
layer. If the i-th masking value of a gate layer becomes 0, the values on the i-th output
channel of its corresponding convolutional layer are suppressed to zero together. Note that
the gate layer after the batch normalization (BN) is the same as that of the convolutional layer
(Conv). The gate layer for BN is needed to prevent non-zero values on masked channels
occurring due to the shift variables of BN. Next, our method calculates a masking vector
for every gate layer as channel pruning. Then, the method retrains the model with gate
layers. Note that gates are not trained in retraining because they are not trainable. Finally,
the method prunes the model with the masking vectors.

Conv

BN

ReLU

Conv

BN

ReLU

Gate

Gate

Conv

BN

ReLU

Gate

Gate

1. Add Gate 4. Cut

2. Prune

Conv

BN

ReLU

3. Retrain

Figure 1: Our Pruning Procedure with Gate Layers.

Handling Skip Connections. Our strategy for handling skip connections is to find convo-
lutional layers which share coupled output channels and to manage them through their gate
layers. Once we find such convolutional layers and their gate layers, it is easy to make them
share the same gating vector. Liu et al. proposed an algorithm to find such layers in [12] for
Group Fisher Pruning, but it cannot handle DenseNet-type skip connections. For example,
in Figure 2, the output channels of C1 are coupled with those of C2 due to the addition oper-
ation. On the other hand, the output channels of C1 are not coupled with those of C3 even if
they are merged into a single operation named concatenation. The finding algorithm of Liu
et al. cannot distinguish these two cases.

To resolve this issue, we propose an algorithm to handle them in a formal way based
on the layer-level topology of a neural network. The detailed algorithm is omitted for space
limitation. Instead, it is provided in the supplemental material.

3.2 Review on Group Fisher Pruning

Let us review the channel pruning method, Group Fisher Pruning, proposed in [12]. Given
N training samples and a single convolutional layer C having d out-channels, we define
a masking (gating) vector m ∈ Rd . We can emulate channel pruning by multiplying the
masking vector to the output of C. Initially, m is the all-ones vector. For the i-th output
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Figure 2: Example of Skip Connections. (Ci represents a convolutional layer, Gi represents a
channel-wise gate layer, Bi represents batch normalization, and Ri represents a ReLU layer.
The gate layers connected with a dotted line are actually the same gate layer.)

channel of C, the channel importance score si is defined as,

si = L(m− ei)−L(m) (1)

≈ 1
2N

N

∑
n=1

(
∂Ln

∂mi

)2

∝

N

∑
n=1

(
∂Ln

∂mi

)2

, (2)

where n is the n-th example, mi is the i-th element of m, ei ∈Rd is the one-hot vector whose
the i-element is one, and L is the training loss with the mask computed with m and ei. The
gradient-based channel importance score is derived by approximating the loss change, which
is caused by pruning a channel, with Taylor expansion and Fisher information. The detailed
derivation is provided in [12].

Then, let us discuss how to prune coupled output channels with a group G of convolu-
tional layers. In this case, suppose that the masking vector m is shared by the convolutional
layers. For the i-th output channel shared by G, the importance score si is calculated as,

si ∝

N

∑
n=1

(
∂Ln

∂mi

)2

=
N

∑
n=1

(
∑

G∈G

∂Ln

∂mG
i

)2

, (3)

where ∂Ln
∂mG

i
is the gradient on mi toward each layer G ∈ G. Based on this importance scoring

method, the pruning method in [12] collects gradients for several iterations and then prunes
the least important channel by assigning 0 to its associated masking vector. That is, m is
iteratively updated as m := m− ei after pruning the i-th channel. This procedure is repeated
until achieving a target sparsity.
Normalization. Group Fisher Pruning includes a normalization technique on the importance
score function with two factors: FLOPs and memory reduction. In this work, we use memory
reduction-based normalization.
Applicability to Connection Types. The importance score function of Group Fisher Pruning
can be used for neural network models having residual connections or concatenation-type
connections. On the other hand, it is not applicable to sparse convolution skip connections
proposed in [21] without any change. For handling such neuron-level skip connections, we
may modify the score function to work with gradients on weights, but it is out of scope in
this paper.
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Make It Efficient. We use the same importance score si of [12] without any change. For
efficiency, we modify the pruning procedure described in [12]. For each pruning step, instead
of removing a single channel one by one, the top-k least important channels are pruned
together (i.e., k = 1 in [12]). With this simple parameterization, the method still has good
pruning performance while providing sweet efficiency.

3.3 Toward Effective Label-Free Channel Pruning

It should be noticed that the gradient-based importance scoring method can take any loss
function. That is, we can consider it as a framework to connect the network (task) loss and
the importance of each output channel of a layer in context of pruning channels. We expect
that if an effective loss is given as the network loss, the pruning performance can be improved
through the framework.

Motivated by this, we propose a new loss function as the network loss. Let us consider
the original network M, and we are applying Group Fisher Pruning to M at the j-th iteration.
We denote the pruned neural network of M after the j-th iteration by M j. The idea is that the
loss function is defined for the difference between the outputs of intermediate convolutional
layers at the same positions of M and M j. Suppose that we have a set L of specific convolu-
tional layers in M and the output tensor of a layer L with the i-th example is denoted by X L

i .
We call such layers anchor layers. Then, the loss for pruning is defined as,

LKL =
1
N

N

∑
n=1

−pi log
pi

qi
, (4)

Lprune = LKL +
1
N

N

∑
n=1

∑
L∈L

(
X L

i −X L j
i

)2
, (5)

where pi (or qi) is the output distribution of M (or M j) and L j is the pruned layer in M j
corresponding to L in M.

The rationale for this approach comes from the effectiveness of knowledge distillation.
We expect that the pruning loss (Lprune) is helpful to compute channel-wise importance
scores with information about the network’s internal dynamics as knowledge distillation
does. In addition, since computing Lprune does not require any label, we can prune channels
without labels. Note that our method uses the same distillation loss for retraining a pruned
model, so the retraining process also can be done without labels.
Good Anchor Layers. To get good anchor layers, we introduce the following topological
concept for formulation. For a layer l in a neural network, we define a node ordering method
denoted by t-rank(l) as follows.

t-rank(l) =
{

maxn∈N(l) t-rank(n)+1 if |N(l)| ≥ 1
1 otherwise

, (6)

where N(l) is a set of inbound layers of l. For a layer l, the inbound layers of l are defined
as layers directly connected to l. That is, the inputs of l correspond to the outputs of its
inbound layers. Thus, t-rank is consistent with the order of calculation of layers during model
inference. An algorithm for calculating t-rank is provided in the supplemental material.

Based on the concept of t-rank, we propose a simple anchor selection method named
First Common Descendant (FCD). FCD and its comparison methods are as follows.
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• First Common Descendant (FCD): This method first finds all groups of convolutional
layers sharing coupled output channels and sorts them by the least t-rank of each group.
Then, it uniformly divides the sorted groups to d partitions. For each partition p, it selects
the activation layer of the first common descendant convolution layer of the last group in
p as an anchor layer. In our experiments, d is fixed to 5.

• All Activations (ALL): This method selects all activation layers as anchor layers.

• Heuristics (HEU): This method selects the last layer of each block as an anchor layer.
Note that blocks we consider for HEU are defined by the authors of models. Such blocks
are used by many existing works for exploiting a network’s internal feature maps for
knowledge distillation.

Note that due to the concept of t-rank, the anchor layers found by FCD are evenly dis-
tributed in the order of calculation no matter what type of skip connection the model has.
The rationale of FCD is based on the assumption that the gradients from the pruning loss
derived with evenly distributed anchor layers can be more stably propagated through layers
in the model.

4 Experiments

4.1 Implementation Detail

Our implementation is based on TensorFlow’s Keras, because we can access and transform
the topology of a neural network with it.
Datasets. We use four datasets: ImageNet [2], CIFAR100 [8], Caltech-UCSD Birds 200
[25], and The Oxford-IIIT Pet dataset [17]. The last two datasets are rather small, and they
were used for evaluating pruning performance with limited data as in [15].
Competitors. We call our pruning method BTS (Bridging T-rank and channel-wise im-
portance Score). We have three competitors as follows. CURL is the Kullback-Leibler
divergence-based pruning method in [15]. This method does not require labels to evaluate
channel-wise importance scores like BTS. Since we compare BTS with CURL in terms of
the effectiveness of selecting unimportant channels, we do not use the approach of combin-
ing the knowledge distillation method and MixUp specified in [15] for fairness. HRank is a
channel pruning method based on the rank of the feature map associated with each channel
[11]. GF is Group Fisher Pruning proposed in [12]. Since HRank does not provide a scheme
assigning sparsity to each layer, we make HRank work with the same layer-wise sparsity of
GF.
Models. We use famous convolutional neural networks having residual or skip connections:
EfficientNet-B0 (ENetB0) [22], ResNet-50 (RNet50) [3], and DenseNet-121 (DNet121) [5].
Note that we use models provided in Keras [1] which are pretrained for ImageNet.

For the transfer learning, we use Adam [7] as an optimizer, and the initial learning rate
is set to be 1e-3 or 2e-3. This setting is also used for computing channel-wise importance
scores based on Group Fisher Pruning. Note that we did not struggle to achieve state-of-
the-art performance so hyper-parameter optimization was not used. Nevertheless, we used
CutMix [29] and MixUp [30] due to their simplicity when computing channel importance
scores, fine-tuning, and transfer learning.
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Table 1: ImageNet and CIFAR-100 Results

Method
ImageNet CIFAR-100

Top-1 #P (M) #F (B) Top-1 #P (M) #F (B)
ENetB0 77.19 5.33 0.40 86.46 4.18 0.40
GF 70.02 2.47 0.22 81.49 1.28 0.22
CURLD 69.37 1.58 0.23 82.47 1.20 0.22
HRankD 71.37 2.47 0.22 80.08 1.28 0.22
BTSHEU 68.66 2.12 0.22 78.25 1.13 0.22
BTSALL 68.10 2.09 0.21 80.55 1.18 0.21
BTSFCD 71.89 2.62 0.22 81.79 1.40 0.22
RNet50 74.89 25.64 3.88 82.66 23.79 3.88
GF 66.41 4.76 2.04 80.27 7.19 1.85
CURLD 68.94 6.71 2.05 80.76 8.32 2.10
HRankD 70.15 7.16 1.82 81.36 9.82 2.45
BTSFCD 69.33 5.74 2.04 81.01 7.53 2.10
DNet121 74.76 8.06 2.85 84.39 7.14 2.85
GF 67.13 3.29 1.67 83.11 2.91 1.68
CURLD 69.45 3.52 1.69 82.13 3.11 1.65
HRankD 69.59 3.77 1.74 81.37 3.12 1.65
BTSFCD 70.52 3.71 1.69 82.91 3.43 1.65

Table 2: Channel Pruning with Limited Data

Method
CUB 200 Oxford-IIIT Pets

Top-1 #P (M) #F (B) Top-1 #P (M) #F (B)
ENetB0 80.32 4.31 0.40 92.12 4.10 0.40
GF 76.66 1.25 0.22 87.11 0.97 0.22
CURLD 79.00 1.38 0.23 89.65 1.32 0.22
HRankD 78.81 1.25 0.22 87.89 0.99 0.22
BTSHEU 78.81 1.34 0.22 90.43 1.00 0.22
BTSALL 79.20 1.50 0.21 90.82 1.12 0.21
BTSFCD 79.20 1.58 0.22 90.62 1.31 0.22

4.2 Results

Overall Results. The overall results are presented in Table 1 and Table 2. For this experi-
ment, compressed models are controlled to have similar FLOPs. Each compressed model is
retrained with about 15 or 30 epochs after pruning it. #P is the number of parameters, and
#F is the number of FLOPs. CURL and HRank are presented with ’D’ because they were
retrained based on our distillation method without labels.

It should be noticed that only GF is set to work with ground truth labels, while the
others are not. The overall results say that BTS effectively prunes unimportant channels
even without labels. BTSFCD is always included in the top-2 results, even if the ranks of the
methods vary over datasets and models. In addition, it is similar to GF in all cases in terms
of accuracy, while BTSALL and BTSHEU do not. This result shows that FCD plays a crucial
role in making our distillation method effective.

One can worry about why the accuracy of pruned models by GF is usually lower than
that by other methods. This may be because the knowledge distillation is more effective
than expected. In addition, even though we controlled the pruning methods in terms of the
number of FLOPs, the importance score function of GF is normalized by memory reduction.
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Table 3: Cost Analysis (min) for Pruning (ENetB0)
Datasets GF CURL HRank BTSFCD

ImageNet 1,319 32 5 3
CIFAR-100 1,457 35 5 4
CUB 200 1,727 36 4 5

Oxford-IIIT Pets 1,766 39 4 5

Table 4: Comparing with Differentiable Pruning (CIFAR-100)
Method Top-1 #P (M) #F (B) Cost (min)
ENetB0 86.46 4.18 0.40 -
DPruning 80.93 1.50 0.23 67
BTSFCD 81.79 1.40 0.22 4
RNet50 82.66 23.79 3.88 -
DPruning 80.06 9.77 2.09 53
BTSFCD 81.01 7.53 2.10 3

That is, the experimental setup is somewhat unfair to GF. Due to this limitation, we do not
claim that BTSFCD is more effective than GF. Nevertheless, we can still say that BTSFCD has
comparable pruning performance to GF.
Pruning Cost. Table 3 presents the pruning cost for each method. Even if BTS is a gradient-
based method like GF, its pruning cost is two orders of magnitude lower than that of GF. It
is also much lower than that of CURL and similar to that of HRank. Because HRank does
not provide sparsity information per layer, we used the same sparsity distribution of GF.
Thus, the cost of determining layer-wise sparsity is not included in the pruning cost for
HRank reported in Table 3. It is well-known that such a cost is not that cheap because it
usually requires a kind of optimization based on many repetitions. Thus, even if HRank has
comparable compression performance to our pruning method, the actual cost for HRank is
likely to be much larger than that for ours.
Comparing with Differentiable Pruning. In addition to the competitors, we compared
BTSFCD with a differentiable channel pruning method [6]. This pruning method determines
which channels could be removed by training channel-wise gates. Since it works with given
layer-wise sparsity information like HRank, we used the layer-wise sparsity of GF for this.
In addition, we used our knowledge distillation for pruning and retraining with this method.

Table 4 presents the result of comparing the differentiable method and ours. DPruning
denotes the pruning method of [6]. In this table, the pruning cost of BTSFCD is an order
of magnitude smaller than that of DPruning. Since DPruning requires a training process
with multiple epochs to train gates for channels, its pruning cost is somewhat expensive.
Note that the pruning cost for DPruning does not include the cost of calculating the layer-
wise sparsity. With such an efficiency, BTSFCD is more effective than DPruning in terms of
pruning performance for ENetB0 and ResNe50.
#FLOPs (#Params) vs. Accuracy Test. We conducted experiments to compare BTSFCD
and GF in terms of pruning performance over the number of parameters and FLOPs. Figure 3
presents their results with ENetB0 for CIFAR-100. The results show that BTSFCD and GF
have similar pruning performance regarding the number of parameters and FLOPs.
Ablation Study for Knowledge Distillation. We present the result of an ablation study in
Table 5 for the loss derived with the anchor layers. For this study, we used 10 epochs for
retraining. ’Anchor Loss’ represents the loss with the anchor layers selected by FCD. Table 5
says that using LKL and the anchor loss together is more effective than using LKL solely.
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Table 5: Ablation study for anchor-based loss (ImageNet, Acc., 10 Epochs)
Methods ENetB0 RNet50 DNet121
LKL 70.96 67.27 67.89
LKL+Anchor Loss 71.45 67.70 68.96

Layer-wise Sparisity. Figure 4 presents layer-wise sparsity values ordered by t-rank. For
ENetB0 and RNet50, the channels of layers close to inputs are less pruned, while those of
layers close to outputs are heavily pruned. For DNet121, it has a unique sparsity distribution
due to concatenation-based skip connections. Figure 5 presents layer-wise sparsity values
over different pruning methods. It is interesting that BTSFCD and CURL produce similar
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Figure 5: Sparsity Distribution over Different Methods (ENetB0, CIFAR-100)
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sparsity distributions, while GF produces a relatively different distribution. There are some
layers having high sparsity in the distribution produced by GF even if they are close to
the inputs. Since the sparsity distribution of BTSFCD does not have such a tendency, it is
interesting to investigate further why GF has a different distribution.

5 Conclusions and Future Works
This paper dealt with improving and modifying Group Fisher Pruning for efficiency and
applicability. We proposed the formal method for handling DenseNet-style skip connections
in channel pruning. We also proposed the technique to make Group Fisher Pruning much
faster in terms of pruning time. Then, we proposed the effective channel-wise importance
scoring method based on feature-level knowledge distillation. Since knowledge distillation
does not require labels, our technique can be easily applied to label-free channel pruning.
Finally, we conducted extensive experiments for demonstration. The results showed that the
proposed method has similar and comparable pruning performance to Group Fisher Pruning,
with lower pruning costs for two orders of magnitude.

In the future, we will analyze the effect of anchor layers in our pruning methods on the
final accuracy of a pruned model. We will devise a more effective algorithm for selecting
anchor layers based on the analysis. In addition, we will improve the algorithm for find-
ing convolutional layers sharing coupled output channels to support very complex neural
networks such as NASNet.
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