
LEE AND MOON: SUPPLEMENTAL MATERIAL 1

Supplemental Material for
"Rethinking Group Fisher Pruning for
Efficient Label-Free Network Compression"

Jong-Ryul Lee1

jongryul.lee@etri.re.kr

Yong-Hyuk Moon†1,2

yhmoon@etri.re.kr

1 Artificial Intelligence Research
Laboratory
Electronics and Telecommunications
Research Institute (ETRI)
Daejeon, Korea

2 University of Science and Technology
(UST)
Daejeon, Korea

1 Layer Grouping Algorithm
This section describes our algorithm for finding convolution layers that share coupled output
channels.

1.1 Background

Graph Structure. One can consider a simple directed acyclic graph to represent a neural
network model where a node represents a layer, and an edge represents the connection be-
tween two layers. However, such a graph cannot support a general neural network model
because a layer can be shared like the parameter sharing of ALBERT in [1]. To correctly
handle such a general neural network model, we need to design a graph structure more care-
fully.

Definition 1.1 (Layer-Level Graph). Given a neural network N , the layer-level graph is
defined to be a directed graph G = (V,E) where V is the set of nodes and E is the set of
directed edges. Each node v ∈ V is identified by tuple (L, i) where L is a neural layer in
N and i represents the i-th visit to L during the inference of N . Let us denote L and i by
layer(v) and visit(v). Each edge e ∈ E is identified by tuple (u,v) where u is a source node
and v is a target node.

From the definition of the layer-level graph, an edge (u,v) represents the data flow from u
to v. Note that since a layer can be visited multiple times in the inference of a neural network
model, we distinguish each visit to the same layer by introducing i in the definition. It is easy
to see that this gives us the following proposition.

c© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

† Corresponding author.

Citation
Citation
{Lan, Chen, Goodman, Gimpel, Sharma, and Soricut} 2020

2 LEE AND MOON: SUPPLEMENTAL MATERIAL

Proposition 1.1. For any neural network model N , the layer-level graph for N is acyclic.

Note that a layer may have multiple different output tensors, but we omit to define them
for notational clarity.
Delayed Depth-First Search. We need a new graph traversal algorithm beyond Depth-First
Search (DFS) to correctly understand and explore a graph structure standing for a complex
neural network model. It should be noticed that DFS itself cannot mimic the data flow of a
neural network model from its inputs to its outputs. For example, consider a neural network
model having concatenation, and suppose that DFS visits a concatenation layer C. Then,
after visiting C, DFS will directly move to the next layer, which is connected from C. The
problem in this situation is that we cannot figure out the shape of the output tensor of C and
its successors because there is no guarantee that DFS has visited all the inbound layers to C.
Such information is essential for transforming a neural network model like channel pruning.
If the shape of the output tensor of C is unknown, we cannot update the weight tensor of
convolution layers connected to C.

To remedy the limitation of DFS, we devise a different graph traversal algorithm named
Delayed Depth-First Search (D-DFS). D-DFS starts from nodes corresponding to the input
layers. This algorithm acts like DFS except that it waits to traverse v until all the inbound
neighbors of v are visited. We denote a set of the inbound neighbors of v by Nin(v). Since
we can check whether all nodes in Nin(v) are visited in O(1) with a binary vector of size
|Nin(v)| and G is acyclic, the time complexity of D-DFS is O(|E|).

One can see that D-DFS correctly emulates the inference of a neural network. Thus,
D-DFS can be used to search and manipulate the topology of N with consideration of the
actual inference flow of N .

1.2 Layer Grouping
Let us introduce an algorithm to find layers that have coupled in/out channels by residual
connections. In this section, a node corresponding to a convolutional layer is called a convo-
lution node for topological interpretation.

Definition 1.2 (Affecting Node). For any convolution node u, it is called an affecting node
of another node v, if there is no path from u to v containing another convolution node. The
layer corresponding to u is called an affecting layer (node).

The concept of the affecting node is used to formulate channel-level coupling. Suppose
that a convolution node u is an affecting node of another node v. Then, the output channels
of layer(u) are coupled with the input channels of layer(v). Suppose that a node w is also an
affecting node of v. It is easy to see that the output channels of layer(u) are also coupled with
those of layer(w). Based on this property, we devise an efficient algorithm to find groups of
convolution nodes sharing the coupled output channels, which is described in Algorithm 1.

This algorithm first defines a map Ω to store affecting layers of the nodes in V . It fills
Ω by running D-DFS starting from the input nodes in Vstart. During D-DFS, for each visited
edge (u,v) ∈ E, transfer(u,v,Ω), described in Algorithm 2 is called. This function is basi-
cally designed to transfer affecting layers from u to v except in two cases. The first case is
that u is a convolution node. In this case, u is an affecting layer of v itself. The other is that
v is concatenation. Suppose that the outputs of two convolutional layers a and b are merged
by concatenation, and the output goes to the input of a convolutional layer c. Because the
input channels of c connected to a and b are not overlapped, the output channels of a and b

LEE AND MOON: SUPPLEMENTAL MATERIAL 3

Algorithm 1: Layer Grouping
Input: G: the layer-level graph
Output: G: The minimal groups

1 begin
2 Initialize a map Ω from V ;
3 foreach v ∈V do
4 Ω[v] := {};

5 Vstart := {v ∈V | |Nin(v)|= 0};
6 D-DFS(G, Ω) with applying transfer for each visited edge;
7 G := {};
8 foreach v ∈V do
9 candidates := [];

10 foreach G ∈G do
11 if |G∩Ω[v]|> 0 then
12 Push G to candidates;

13 if |candidates|= 0 then
14 Push Ω[v] to G;

15 else if |candidates|= 1∧ candidates[0] = Ω[v] then
16 continue;

17 else
18 new := {};
19 foreach G ∈ candidates do
20 new := new∪G;
21 Remove G from G;

22 new := new∪Ω[v];
23 Push new to G;

24 return G;

Algorithm 2: transfer(u,v,Ω)
Input: (u,v) ∈ E: the visited edge (u,v) during D-DFS, Ω: the affecting layer map

1 begin
2 if u is convolution then
3 Ω[v] := Ω[v]∪{u};

4 else if v is concatenation then
5 Ω[v] := {};

6 else
7 Ω[v] := Ω[v]∪Ω[u]

are not coupled. Therefore, we do not need to transfer the affecting nodes of u to v, so that
Ω[v] is assigned to the empty set.

After running D-DFS to get the affecting layers of every node, the algorithm finds layers
sharing coupled output channels through Ω as follows. Let us define a sharing group as a
group of layers sharing coupled output channels. A set of the affecting layers of a node can

4 LEE AND MOON: SUPPLEMENTAL MATERIAL

be a sharing group because the output channels of affecting layers are coupled. In addition, if
there are two sharing groups overlapping with each other, we do not need to keep the smaller
group. Based on this property, the minimal sharing groups are computed by checking all the
affecting layers. The detailed procedure is described in Algorithm 1.

In Lines 2-5 of Algorithm 1, the algorithm initializes variables for running D-DFS to fill
Ω. In Line 6, it computes Ω with D-DFS. In Lines 8-23, the algorithm computes the minimal
sharing groups as follows. For each node in V , it finds sharing groups in G overlapped with
Ω[v]. If there is no such sharing group, Ω[v] is added into G in Lines 13-14. If there is
only one sharing group G and G = Ω[v], then the algorithm does nothing in Lines 15-16.
Otherwise, all sharing groups overlapped with Ω[v] and Ω[v] are merged into a single sharing
group in Lines 17-23. In this way, we can efficiently find minimal sharing groups.

2 The Computation of t-rank
For a layer l in a neural network model, to compute t-rank(l), we need to know the value of
t-rank for all inbound layers of l. Recall that D-DFS waits to traverse l until all the inbound
layers of it are visited. Thus, we can compute t-rank(l) via D-DFS with the guarantee that
for any inbound layer u of l, t-rank(u) is already computed.

The value of t-rank for all layers can be computed via running D-DFS from input layers
to outputs once. Thus, the computation algorithm for t-rank totally takes O(m) where m is
the number of connections between the layers, which equals the time complexity of DFS.

Table 1: The Effect of Distillation
Method

ENetB0 RNet50 DNet121
Top-1 #F (B) Top-1 #F (B) Top-1 #F (B)

GF+D 81.38 0.22 81.05 1.85 82.43 1.68
GF+Label 81.49 0.22 80.27 1.85 83.11 1.68
GF+D+Label 82.06 0.22 79.69 1.85 83.13 1.68
CURL+D 82.47 0.22 80.76 2.10 82.13 1.65
CURL+Label 83.40 0.22 80.32 2.10 82.62 1.65
CURL+D+Label 83.59 0.22 80.27 2.10 82.71 1.65
BTSFCD+D 81.79 0.22 81.01 2.10 82.91 1.65
BTSFCD+D+Label 82.16 0.22 80.42 2.10 83.13 1.65

3 Distillation Effect
To understand the effect of our distillation method, we conduct more experiments. The
results are described in Table 1. In this table, ’D’ represents training with our distillation
method, and ‘Label‘ represents training with ground truth labels. For example, CURLD is
equivalent to CURL+D.

The results show that our distillation method has similar effectiveness compared to using
only the task loss with the labels. For EfficientNet and DenseNet, it is quite reasonable that
the best strategy in terms of accuracy is to use our distillation method and the ground truth
labels together. On the other hand, the best strategy for ResNet is to use our distillation
method solely. This is somewhat strange, but consistently happens over GF, CURL, and
BTSFCD. Since all the hyperparameters for training EfficientNet, ResNet, and DenseNet are

LEE AND MOON: SUPPLEMENTAL MATERIAL 5

the same, we need to do more experiments with different options for the hyperparameters.
Such experiments would be a good starting point for further study.

References
[1] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,

and Radu Soricut. Albert: A lite bert for self-supervised learning of language represen-
tations. In ICLR, 2020.

