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Abstract

Recent self-supervised models have demonstrated equal or better performance than
supervised methods, opening for AI systems to learn visual representations from prac-
tically unlimited data. However, these methods are typically classification-based and
thus ineffective for learning high-resolution feature maps that preserve precise spatial
information. This work introduces superpixels to improve self-supervised learning of
dense semantically rich visual concept embeddings. Decomposing images into a small
set of visually coherent regions reduces the computational complexity by O(1000) while
preserving detail. We experimentally show that contrasting over regions improves the ef-
fectiveness of contrastive learning methods, extends their applicability to high-resolution
images, improves overclustering performance, superpixels are better than grids, and re-
gional masking improves performance. The expressiveness of our dense embeddings is
demonstrated by improving the SOTA unsupervised semantic segmentation benchmark
on Cityscapes, and for convolutional models on COCO. Code is available at https:
//github.com/robin-karlsson0/vice.

1 Introduction
Progress in general computer vision tasks in the past decade has been based on supervised
learning with large datasets annotated by human labelers [63]. Arguments are made that
generalizable and robust computer vision models have not yet been achieved, and further in-
creasing the amount of labeled data is unsustainable [28, 74]. One hypothesis is that learning
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Figure 1: ViCE learns dense semantic embeddings from raw image data. Unsupervised se-
mantic segmentation experiments show that our embedding maps are semantically richer and
fit the content better compared to the SOTA baseline PiCIE [23]. Superpixelization further
improves our results by enabling dense contrastive learning over high-resolution images.

from top-down categorization (“what it is") from semantically vague and inconsistent human
annotation could be a limiting factor [35]. Instead, cognitive science tells us that learning
from bottom-up association (“what it is like") may be more similar to how visual concepts
emerge for humans [75, 81, 82, 93]. The success of bottom-up learning for word embed-
dings in natural language processing (NLP) [49, 76, 77] further strengthens the hypothesis.
Recent self-supervised computer vision methods show promise in this direction with results
approaching or even surpassing those of supervised methods [44]. However, these methods
are classification-based and thus ineffective for learning high-resolution dense feature maps.
Such maps are needed to associate semantic embeddings to spatial regions in vision inputs.

We introduce a method for improving the effectiveness of self-supervised classification
methods for dense representation learning by decomposing images into a small set of visually
coherent regions using superpixelization. We demonstrate how applying the method enables
the contrasting cluster assignments method SwAV [14] to learn dense representations. The
contributions of our paper are as follows:

• A new conceptual approach to represent high-resolution images as semantically rich
embedding maps partitioned into distinct, coherent regions, represented by a latent
Visual Concept Embedding (ViCE), analogous to word embeddings in NLP.

• Introduce superpixelization as a natural hierarchical region decomposition for dense
contrastive learning in unsupervised semantic segmentation of high-resolution images.
We demonstrate how to effectively implement self-supervised classification methods
with region decomposition.

• Present SOTA unsupervised semantic segmentation results on Cityscapes, and for con-
volutional models on COCO.

• Experimentally demonstrate; Online contrasting cluster assignment [14] improves dense
representation learning performance compared with offline clustering [12, 23]. Image
decomposition by superpixelization improves performance, reduces computational time,
and is more effective than grids. The ability to use high-resolution images improves
performance. Contextual region masking improves performance.

2 Related work
Self-supervised visual representation learning Early works experimented with pretext
tasks as a substitute for human annotations [9, 33, 41, 80, 86, 113]. Recent work demon-
strates that image-level embedding classification with cross-entropy minimization on large
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datasets is a more effective approach capable of surpassing supervised pretraining [15, 44].
Contrastive methods [20, 24, 51, 95] learn discriminative latent embedding vectors for im-
ages by “pulling together" views of the same image, and “pushing away" embeddings of
different images. Recent non-contrastive methods [15, 46, 111] demonstrate approaches to
avoid negative sampling to improve computational efficiency. Clustering methods [4, 12,
13, 14, 68, 108, 112] simultaneously discovers a set of clusters or prototypes, and learns
discriminative image embeddings. Contrary to contastive methods, the objective does not
have to be approximated as optimizing over the entire set of negative representative clusters
is tractable. DeepCluster [12] iteratively performs K-means clustering over the entire dataset
and learns an embedding model and classification head to predict the cluster assignment.
SeLA [4] presents a principled formulation for clustering and representation learning as a
single optimization objective, by casting cluster assignment as an optimal transport prob-
lem [29, 65]. SwAV [14] and ODC [112] demonstrate that clustering can be done online per
batch to increase learning efficiency.

Dense representation learning Recent clustering-based methods approach dense represen-
tation learning as an instance segmentation problem [16, 53, 67, 114] and regional feature
correspondence [66, 99, 105]. These methods are purposed for pretraining backbones and
generally output small feature maps (e.g. 7x7), in contrast to our method. Similarly to our
method, VADeR [90] learns dense representations by contrasting pixel-level embeddings in
augmented views. Our method improves on VADeR by allowing training on larger feature
maps (512x512 vs. 56x56 px), more views, optimization without a negative sample mem-
ory bank, and contextual region masking. Self-supervised object detection [6, 30, 98, 100,
103, 107] learns expressive embeddings for plausible object proposal regions sampled ran-
domly or heuristically [94]. Masked image modeling (MIM) [5, 21, 52, 106] demonstrates
strong representation learning capability surpassing contrasting views. However, all these
models output low-resolution feature maps. In contrast, our method ViCE generates precise
object-fitting semantic partitioning even for high-resolution images.

Unsupervised semantic segmentation Existing works leverage self-supervised clustering
approaches to learn coherent semantic groupings from mutual information [56, 83], geomet-
ric equivariance [23], and GAN-based approaches [7, 19]. Other works [54, 97] leverages
self-supervised depth map estimation [42, 73] for enhancing semantic segmentation perfor-
mance. Recently, DINO [15] demonstrated that attention maps for semantic objects naturally
emerge for self-supervised Vision Transformer (ViT) models [34, 96]. STEGO [47] presents
a method to distill features from DINO and achieve SOTA results. Our work improves
learning efficiency also on high-resolution images by contrasting cluster assignment over
superpixels.

Image decomposition by superpixeliation Prior work which visually groups pixels in-
cludes semi- and weakly supervised models [37, 64, 109], and methods bootstrapping from
pretrained saliency [39] and contour detector [55, 60, 115] models. We utilize visual group-
ing without depending on pretraining and not only as an inductive bias, but to perform con-
trastive learning over a set of visually coherent regions instead of individually meaningless
pixels. Ouyang et al. [84] uses self-supervised learning to map superpixel regions between
augmented views for transferring semantic labels in annotated samples to corresponding re-
gions in unannotated samples. [59, 78] uses superpixels to refine the unsupervised segmenta-
tion output. In contrast, our method uses superpixels to learn semantics from high-resolution
images without annotated data.
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Figure 2: Overview of ViCE. A training iteration starts by generating M augmented views.
First, we partition the image into I mutually common superpixel regions. The model fθ

transforms view images into visual concept embedding maps Ẑ(m). All vectors z j are ar-
ranged in a tree structure TZ used to conveniently organize indices of corresponding regions.
A mean vector z∗i is computed for each region. Next, we score each z∗i in terms of closeness
to each concept vector c(k), resulting in region-specific score vectors s∗i .

3 ViCE: Visual Concept Embeddings
The concept of “the thing in itself" in Kantian philosophy denotes the existence of objects
as they are independent of observation. Similarly, one can view natural images perceived
by a photometric sensor to be generated from a set of latent semantic visual concepts. We
model this process by a model f (X |Z) that generates the observable pixel appearance X of
semantic entities represented by a set of latent visual concepts C = (c(1), . . . ,c(K)), encoded
into a dense embedding map Z. Our method is based on learning a function fθ to approxi-
mate the inverse mapping f−1(Z|X) while simultaneously discovering the set of latent visual
concepts C. The problem of finding the inverse mapping is called vision as inverse graph-
ics [25, 61, 62]. We propose to learn a mapping fθ that predicts the same visual concept em-
bedding map Z ∈RD×H×W with the same spatial resolution as the input image X ∈R3×H×W

for all mutually co-occurring abstract pixel patterns generated from augmented views X̃ (m).
All views contain one subregion representing the same content, but with different pixel ap-
pearances and surrounding context.

fθ (X̃ (m))≃ Z ∀m ∈ (1, . . . ,M) (1)

We relate our approach to discovering semantic meanings for pixels to discovering semantic
meanings for words in NLP similar to recent MIM works [5, 21, 106, 116]. Methods to learn
semantically rich word embeddings [76, 77, 88] are based on co-occurrence [49] and con-
text [32, 89] of individually meaningless tokens. Each visual concept vector c corresponds
to a distinct visual concept primitive or basis vector, and visual concepts are linear combi-
nations of these primitives. The set of concepts C is known and finite, ensuring tractable
probabilistic enumeration over possible configuration akin to successful probabilistic lan-
guage modeling approaches in NLP [32, 91]. We choose to demonstrate our method with
the recent SOTA self-supervised learning method SwAV [14] to learn both fθ and C, though
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in principle any cluster-based self-supervised method can be used. Fig. 2 shows an overview
of our method.

3.1 Decomposing images into visually coherent regions

A high-resolution image contains millions of individually meaningless and mostly redun-
dant pixels. However, it is known that training on high-resolution images is beneficial for
learning to segment small objects such as poles and pedestrians [17]. Nevertheless, naively
applying self-supervised representation learning methods based on vector comparison on
high-resolution embedding maps is inefficient. To solve this problem, we propose to decom-
pose the image into a small set of visually coherent regions using superpixelization [92] and
apply representation learning methods to this greatly reduced set of elements. Superpixel
methods like Simple Linear Iterative Clustering (SLIC) [1] reduce elements by O(1000),
transforming an image from millions of pixels into less than a thousand regions. We choose
SLIC because of advantages [2] such as more uniform region distribution compared to graph-
based methods [36]. In contrast to grid decomposition, which is the standard for ViT mod-
els [15, 34], superpixels can preserve detail by representing thin and small patches like poles
as distinct regions while requiring 75% fewer elements on average with the same base el-
ement size. While in this paper our objective is to show that even the simplest form of
region decomposition is useful, it is likely that leveraging learning-based superpixelization
methods [3, 71, 101] can further improve performance.

3.2 View generation and contextual region masking

We generate augmented views for discerning the latent semantic visual concepts through
photometric invariance [20], and geometric equivariance [23]. We introduce region masking
as an additional augmentation for contextual invariance shown to improve performance. To
generate views with different contexts, we first sample a center point (x,y)∗ in the image.
Sampling is done in content-rich regions to better satisfy the equipartitioning of concepts
assumption [4, 14] for each training batch. We found that probabilistic sampling from a
Gaussian filtered Canny edge detection map[11] is a useful measure of image content. Views
X̃ (m) are generated by sampling M view centers (x,y)(m) around (x,y)∗ while ensuring a mu-
tual image subregion exists. We generate geometrically equivariant views by first sampling
a resize coefficient β (m) for each view m. β determines the size of the cropped view region
as exemplified by the red and blue crop regions in Fig. 2. All view crops are resized to the
common view size, thus enforcing the model to learn resolution invariant representations.
All views are randomly flipped horizontally. All views are augmented by random color
distortion and Gaussian blurring before normalization to learn appearance invariant visual
concepts [20, 102, 104]. A ratio of superpixel regions is masked with noise as a means to
learn robust features and alleviate the shortcut learning problem [40]. We provide the view
generation algorithm as pseudocode in the Supplementary.

3.3 Learning algorithm

The objective Lcl is designed to simultaneously learn the mapping function fθ in Eq. 1, and
optimize the distribution of latent visual concepts C. The algorithm can be viewed as an
extension of SwAV [14] to the problem of learning dense embedding maps. We refer to prior
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work for an explanation of SwAV [4, 14, 29, 58]. The rest of this section explains the flow
of a training iteration as visualized in Fig. 2. We provide pseudocodes in the Supplementary.

A training iteration starts by partitioning an image X (n) ∈ R3×H×W with height H and
width W into a superpixel region map A(n) ∈ RH×W , with integer values specifying every
pixel’s region index. Next, a set of M augmented views X̃ (n) = {X̃ (1,n), . . . , X̃ (M,n)} and cor-
responding superpixel map crops Ã(n) = {Ã(1,n), . . . , Ã(M,n)} of size h and w are generated for
each image as explained in Sec. 3.2. Ã(n) is processed to contain only mutual regions existing
in all views. The learned function fθ transforms X̃ (n) into a normalized visual embedding
tensor Ẑ(n) ∈ RD×h×w. Next Ẑ(n) is decomposed region-wise into row vectors z j ∈ RD and
stored in a tree structure TZ used to conveniently organize indices of corresponding regions
i in view m of image n. Vectors of non-mutual regions are discarded. A single mean vector
z(i,m,n)∗ is computed to represent each region i and stored in TZ∗ . Each vector z(i,m,n)∗ is scored
in terms of compatibility or closeness to each visual concept vector C = (c(1), . . . ,c(K)) by
computing the following matrix product

s∗ = (z∗)TC (2)

with C ∈ RD×K represented as an optimizable weight matrix. Note that the dot product z · c
equals the cosine distance as both vectors are normalized. All regional score vectors s(i,m,n)∗

are stored in a tree structure TS∗ . The concept assignments q(i) are determined by optimally
distributing s(i,m,n)∗ uniformly over all concepts c(k) so that the overall compatibility between
all s(i) and c(k) are maximized for regions in the primary view m = 1 [14]. We compute
q(i) efficiently by the Sinkhorn-Knopp algorithm [4, 29]. A FIFO queue of accumulated
s(i,1,n)∗ vectors is used to improve the empirical approximation of a uniform distribution of
concepts [4, 14]. The swapped prediction learning objective [14] is

Lcl =− 1
N(M−1)

N

∑
n=1

M

∑
m=2

1
I

I

∑
i=1

q(i)log σ

(
1
τ

s(i,m)∗
)

(3)

where σ() is the softmax function and τ is temperature. Two normalized embeddings z(a) and
z(b) are compared for semantic similarity using the dot product. This operation is equivalent
to comparing two word embeddings by cosine distance [76, 77].

4 Experiments
We implement ViCE in the self-supervised learning framework VISSL [45] based on Py-
Torch [85]. The quality of learned embeddings are evaluated on the COCO-Stuff164k [10,
69] reduced to 27 classes [56] and the Cityscapes [27] benchmark datasets. We use the
framework MMSegmentation [26] for evaluation and visualization. Our comparative base-
line for dense representation learning is the SOTA unsupervised semantic segmentation CNN
model PiCIE [23] based on DeepCluster [12]. We experiment with ResNet 18 and 50 back-
bones [50] and two decoder architectures; the SOTA model DeepLabV3+ (DLV3+) [18] for
high-resolution images, and the Feature Pyramid Network (FPN) [70] used in our baseline.

We evaluate the semantic richness and spatial accuracy of the resulting embedding maps
using clustering and linear models. For unsupervised semantic segmentation we compute
a set of K clusters based on output embeddings using FAISS [57]. Each cluster is greedily
assigned the majority label class, or optimally assigned by the Hungarian matching algo-
rithm [48] to cover all classes. For linear model evaluation, we train a 1× 1 convolution
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Table 1: Representation quality experiment results on low- and high-resolution images.
Model mIoU Acc. Model mIoU Acc.

COCO Cityscapes
ResNet50 [50] C 27 8.9 24.60 ResNet50 [50] C 27 - -
MoCoV2 [22] C 27 10.40 9.60 MoCoV2 [22] C 27 - -
DINO∗ [15] C 27 9.60 30.50 DINO∗ [15] C 27 - -

IIC [56] C 27 6.71 21.79 IIC [56] C 27. 6.35 47.88
PiCIE [23] C 27 13.84 48.09 PiCIE [23] C 27 12.31 65.50

C 27⋄ 14.60 48.37 C 27⋄ 11.85 64.29
C 27⋆ 9.27 38.31 C 27⋆ 8.80 82.48
C 128⋆ 10.75 49.81 C 128⋆ 7.97 56.52
C 256⋆ 12.42 66.02 C 256⋆ 12.71 89.86
Linear 14.77 54.75 Linear - -

PiCIE+H [23] C 27+100 14.40 50.0 PiCIE+H [23] C 27+100 - -
ViCE (low-res) C 27 11.40 28.91 ViCE (low-res) C 27 12.81 31.87

C 27⋆ 11.55 50.49 C 27⋆ 19.52 80.34
C 128⋆ 16.66 52.33 C 128⋆ 21.48 81.55
C 256⋆ 17.98 54.92 C 256⋆ 21.24 81.72
Linear 25.49 62.78 Linear 31.55 86.33

No pretrain Linear 24.84 82.99
ViCE (high-res) C 256⋆ 21.77 64.75 ViCE (high-res) C 256⋆ 25.23 84.28

Linear 29.38 68.16 Linear 30.40 87.0
STEGO∗ [47] C 27 28.20 56.90 STEGO∗ [47] C 27 21.00 73.20

Linear 41.00 76.10 Linear - -

layer without a nonlinear activation function. All models are trained and evaluated on sepa-
rate train and validation sets. Note that the visual concepts learned by ViCE during training
are not used for evaluation, and it is therefore fair to compare ViCE and baseline performance
as long as the number of clusters is the same in both evaluation models.

We conduct experiments on 32 V100 32 GB GPUs. Each GPU loads four images, and
generates five augmented views. High- and low-resolution views correspond to 512 × 512
pixels and 256 × 256 pixels, respectively. The resulting total batch size is 128 images with
640 views. To generating superpixels, we use SLIC [1] implemented in OpenCV [8] with av-
erage region size 20 px. Maximal mask coverage is 25 %. The view resize coefficients β are
sampled between 0.5 to 2. The embedding dimension D and the number of visual concepts C
are 128. We use the same set of hyperparameters in all experiments. A hyperparameter study
is given in the Supplementary. Parameters for the objective Lcl are the same as SwAV [14].
The FIFO queue consists of 5K score vectors s∗ per GPU. The model is optimized using the
LARS optimizer [110] with weight decay 10−6. The learning rate (LR) schedule is linear
warmup followed by cosine decay [72, 79]. We set the peak LR using the linear LR scaling
rule [43] with a base LR 0.04 for a single 4 GPU node. We initialize models with the default
PyTorch pretrained weights obtained by training on ImageNet [31] for 600 epochs. However,
our method can learn from random initialization as shown in Table 1. Timing information is
given in the Supplementary.
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Table 2: Performance of best models trained on high- and low-resolution images
Dataset Resolution Configuration Cluster mIoU Linear mIoU

COCO Low RN50, FPN 19.37 27.63
High RN50, DLV3+ 21.77 29.38

Cityscapes Low RN18, FPN 21.48 31.55
High RN18, DLV3+ 25.23 30.40

4.1 Representation quality experiments

Table 1 presents results on low-resolution image experiments. C K denotes evaluation with
K clusters, ⋄ denotes reproduced results with optimal cluster assignment, ⋆ denotes greedy
assignment, and ∗ denotes ViT-based models. The best CNN-based cluster and linear model
results are written in bold. Both ViCE (low-res) and PiCIE [23] use the same ResNet 18
backbone, FPN decoder, and 320×320 px image downsampling procedure for fair compari-
son. All ViCE models are trained for 4 epochs for COCO, and 24 epochs for Cityscapes, re-
spectively. We trained and evaluated our PiCIE models using the official code [23]. Our high-
resolution and overclustered model achieves SOTA results on Cityscapes, and on COCO for
convolutional models. The generic image COCO results show that ViCE is adept at dis-
covering concepts using overclustering [38]. We believe this property stems from online
clustering being more stable than offline clustering methods [14, 112]. The Cityscapes re-
sults show ViCE improving on PiCIE in all experiments. ViCE performs better than the
SOTA ViT-based model STEGO [47] on Cityscapes with high-resolution and overcluster-
ing. We trained our best high-resolution C 256* COCO model in 64 h and the equivalent
PiCIE model in 52 h. Fig. 1, 3 shows clustering output visualizations. Table 2 shows that the
best high-resolution models improves on the best low-resolution models evaluated on high-
resolution images. Note that effectively training on high-resolution images is made possible
by superpixelization. Results for varying superpixel sizes and performance are given in the
Supplementary.

4.2 Ablation studies

The upper section of Table 3 provides an ablation study for low-resolution images eval-
uated by a linear model. The first column represents the baseline ViCE model using an
RN18 backbone and FPN decoder [70] without region decomposition. The second columns
indicate gains from random masking. The third and fourth column shows gains from apply-
ing grid and superpixel region decomposition. The final column indicates that utilizing the
more complex DLV3+ decoder [18] is detrimental in the case of low-resolution images. We
speculate this is because atrous convolutions in high-resolution decoders skip relevant neigh-
boring information in tiny feature maps. The first column in the bottom section of Table 3 is
empty, as learning dense embeddings for high-resolution images without superpixelization is
computationally intractable. The second column showcase the radical difference in using su-
perpixelization. The third column demonstrates the importance of utilizing a high-resolution
decoder. The final column shows how superpixels are better than grids with equivalent base
element sizes.
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Table 3: Representation quality ablation study on low- and high-resolution images.
Low-resolution Cityscapes

FPN 1px Masking Grid 10px Super 10px DLV3+

mIoU 29.66 30.42 31.30 31.55 11.56
Time 34h 4min 31h 6min 5h 31min 5h 31min 5h 37min

High-resolution Cityscapes
FPN 1px FPN super 20px DLV3+ grid 20 px DLV3+ super 20px

mIoU - 8.98 25.53 29.38
Time 92h 20min (est.) 4h 55min 10h 1min 6h 16min

Table 4: Domain generalization performance
Training data domain Evaluation data domain mIoU aAcc

Cityscapes Cityscapes 30.40 87.00
COCO Cityscapes 34.14 86.10

4.3 Domain Generalization experiment
In Table 4 we show how ViCE benefits when learning from a large general visual domain.
Training on COCO and evaluating on Cityscapes with a linear model increases performance
from 30.40 to 34.14 (+3.74) mIoU by improving the distinctiveness of complex classes like
“Traffic sign”. Our findings show that general vision models can learn more useful features
compared to narrow vision models even when applied in the narrow domain. The recent
SOTA model STEGO [47] similarly uses a backbone trained on ImageNet only.

4.4 Qualitative evaluation
Fig. 4 visualizes dense embedding maps to demonstrate how ViCE discovers distinct seman-
tic visual entities or concepts from natural images without human supervision or proposals
heuristics [6, 94]. For example, persons are represented differently from the ground surface,
and human faces and bodies are semantically similar. We visualize embedding maps by PCA
dimensionality reduction [87] and scale each z to the RGB range.

5 Conclusion
We present a new SOTA self-supervised unsupervised semantic segmentation method ViCE
for learning to generate dense embedding maps. Our experiments quantitatively demonstrate
that decomposing images by superpixelization improves the effectiveness of classification-
based self-supervised methods, particularly for high-resolution images, and also achieves
better performance than conventional grid decomposition. We hope our work will raise
interest in further incorporating non-uniform image decomposition techniques to improve
self-supervised computer vision methods including ViT-based models like DINO [15] and
other dense representation learning methods [66, 90, 99, 105].
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Figure 3: Output cluster visualizations on COCO (top) and Cityscapes (bottom).

Figure 4: Dense embedding maps visualized as RGB images.
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