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Abstract

Recently, the Local Implicit Image Function (LIIF) has been proposed, which can
generate continuous 2D image representation for pixel-based images. The continuous
image representation can be presented at any resolution. However, the LIIF represen-
tation has limited fidelity when presented at higher resolution, resulting in unrealistic
images. To solve this problem, simply adding a GAN can produce a realistic image, but
it degrades the local structure of the image. In this paper, we propose the LIIF-GAN,
a novel architecture-based deep model, to generate realistic images at continuous scales
while maintaining local image structures. It utilizes a generative adversarial network
(GAN) and multiple decoders for encoder features at different levels. We show that the
LIIF-GAN can generate a more realistic continuous image representation than previous
methods. Furthermore, we show that our new architecture retains the local image struc-
ture better than simply using a GAN with the existing architecture. The performance
of the proposed method is demonstrated qualitatively and quantitatively through various
experiments.

1 Introduction

The real visual world is continuous. However, when we are processing a visual scene, dis-
crete 2D images are used due to the limitations of the computer’s storage and display for-
mats. So, if we want to use various sized images, we need to use image resizing. However,
image resizing usually degrades image quality and may lead to the wrong result in some
applications. To overcome this limitation, a local implicit image function (LIIF)[4] was
proposed to learn continuous image representation. The LIIF is based on a neural implicit
function[5, 10, 19, 22, 24, 25] that is used in many 3D vision applications.
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Figure 1: The Local Implicit Image Function-GAN (LIIF-GAN) represents a realistic image
on a continuous scale. As shown in the figure, the LIIF-GAN can make more realistic images
than the state-of-the-art LIIF can.

However, the LIIF uses only the L1 loss in the training process. According to previous
studies[2, 29], training the image reconstruction model using only L1 loss (or L2 loss) de-
grades the fidelity of the output image. As a result, we get an image in which the local details
have disappeared. So, the LIIF can’t adapt to various applications that demand realistic im-
ages. The introduction of GAN[9] and perceptual loss[11] to the LIIF is an option for the
above problem. However, while this method can increase the image fidelity, it can degrade
the structure of the image component[2, 29]. Therefore, it is not a suitable solution to simply
add GAN and perceptual loss to the model.

To solve this problem, we propose the LIIF-GAN, a new method to learn realistic image
representations on a continuous scale while maintaining the structure of image components.
To make the LIIF-GAN represent well-structured realistic images, multiple decoders are in-
troduced for the reconstruction part. The first decoder is trained using L1 loss only, like the
original LIIF. As a result, the first decoder outputs an unrealistic image that has well pre-
served internal structure. The second decoder is trained to improve the fidelity of the image.
The combination of the first and second decoder’s outputs is fed to GAN and perceptual
loss computation. Also, we use different layer features of an encoder for the input of each
decoder. As a result, our novel structure can generate well-structured, realistic images. A
detailed explanation of the model is described in Sec 3.3. Fig.1 shows our results compared
to the LIIF, which is the previous state-of-the-art(SOTA) method. Our contribution can be
summarized as follows: 1) We introduce GAN and perceptual loss to the LIIF to increase
the fidelity of the image. 2) A new model architecture utilizing two decoders is proposed
to maintain the internal image structure and increase the fidelity of the image at the same
time. 3) To further improve the performance, we suggest using different layer features of the
encoder for the input of each decoder.
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2 Related works

Super resolution Our goal is representing a realistic image on a continuous scale. If we
can make the continuous image representation, then we can generate an arbitrary scale high
resolution image from a low resolution image. So, we can measure the performance of
representing the realistic image on a continuous scale through a super resolution task[3, 7,
14, 16, 17, 27, 28, 29, 32, 34]. Dong et al.[7] achieved high performance in super resolu-
tion by using deep convolutional neural networks. Ledig et al.[16] demonstrated that using
GAN can allow us to achieve realistic results. Wang et al.[29] showed that mixing up the
model parameters that are trained by L1 loss and GAN loss gets better results than using
parameters that are trained with a single loss. Wang et al.[30] improved the super resolution
performance by using augmented inputs, which are made by various kernels. Although there
are many studies about super resolution, most of the studies use the convolutional neural
network(CNN)[15] to solve the super resolution problem. Because CNN usually has a fixed
input and output size, they have the limitation that they can perform super resolution with a
fixed scale only. For learning realistic image representations on a continuous scale, we use
the implicit function instead of the CNN.
Neural Implicit Function in 2D image representation Research using implicit functions
to represent 2D images has been conducted[4, 20, 26, 31]. Stanley et al.[26] represented 2D
images using a compositional pattern producing network. Chen and Zhang[5] tried to learn
a latent space for simple 2D digits. Sitzmann et al.[25] found that using a periodic activation
function instead of ReLU[21] can improve the ability to represent the fine details of a natural
image. Chen et al.(LIIF)[4] tried to learn the space that can represent various natural images
in continuous resolution. Like [6, 8, 10, 23, 24], the LIIF utilizes local latent codes. Local
latent codes are used to recover complex images in the LIIF. The UltraSR[31] is follow-up
research to the LIIF. It demonstrated that using spatial encoding on input coordinates can
improve the performance of the LIIF. However, in both studies, the L1 loss is only used in
training. Training using only L1 loss degrades image fidelity[2, 29]. Compared with them,
we can get a more realistic image representation by introducing a novel network architecture
to accommodate GAN and perceptual loss.

3 Method

3.1 Local Implicit Image Function

Since the LIIF is the baseline of our research, we briefly explain the LIIF. The LIIF takes a
coordinate and its nearby features as inputs and generates a single RGB value. The coordi-
nate can be a real value. The LIIF can create images of any size by repeating this process
along all pixel coordinates. Let I denote an image and M represent a 2D feature map that
corresponds to I. In the LIIF, an encoder computes M from I. z denotes a feature (we call
it the latent code in other parts of the paper) in M. In the LIIF, the feature map M is posi-
tioned in [0, 1]x[0, 1] 2D space. Then the coordinates of each feature z can be determined
according to its location in M. fθ (with θ as its parameters) is a multilayer perceptron (MLP)
based decoder shared by all images. Let’s denote x as the 2D coordinate of the target image
pixel. The output RGB value for the corresponding coordinate is denoted by s. The simplest
version of the LIIF decoder is formulated as
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Figure 2: The architecture of the LIIF-GAN. The detail explanations of each part are de-
scribed in Sec. 3.

s = ∑
t∈{00,01,10,11}

St ′

S
fθ (z∗t , [x− v∗t ,c]), (1)

Figure 3: The components of
LIIF(also used in LIIF-GAN). The
detail explanations are given in Sec.
3.

where z∗ is the nearest z from x and v∗ is the
coordinate of z∗. Using a feature map and a coor-
dinate as inputs, the function fθ generates a RGB
value. The 00, 01, 10, and 11 indicate top-left, top-
right, bottom-left, and bottom-right directions, re-
spectively. St ′ is the area of the rectangle between
x and v∗t ′ , where t ′ is diagonal to t (for example, if t is
01, t ′ is 10). S is the sum of St . The c is a vector that
consists of the height and width of the query pixel.
[x−v∗,c] means a concatenation of x−v∗ and c. Sim-
ilar to the neural implicit function, the LIIF takes the
coordinates and local latent code and then generates
a continuous image representation. In Fig.3, we vi-
sualize the components of the LIIF.

The training of the LIIF is conducted as follows:
1) Prepare a ground truth image. 2) Make a down-
scaled image using bicubic interpolation. The scales
are between x1.0 and x4.0. 3) Create a 2D feature
map of the down-scaled input image using the en-
coder. 4) Select some coordinates randomly from the
ground truth image. 5) Compute s at each coordinate using the decoder fθ , 2D feature map
M, the target coordinate x, area S, and cell size c. 6) Calculate the L1 distance between the
RGB output s and the ground truth color value. 7) Use an optimizer to reduce the distance.

3.2 Toward the Realistic Image
According to previous research [2, 29], using only L1 loss in training can lead to unreal-
istic image reconstruction. To improve the fidelity, GAN and perceptual loss are normally
used. Since the LIIF adopts random coordinate sampling and generates a single individual
RGB value, GAN and perceptual loss cannot be applied directly. It is necessary to change
the sampling method. Instead of random coordinate sampling, we use random group sam-
pling(RGS). RGS consists of two steps: 1) A random sample point in a target image is
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Figure 4: The architecture of the LIIF-GAN-S. The detail explanations are described in Sec.
3.2.

chosen at random. 2) Around that point, more coordinates are selected in a patch shape.
Note that the initial sample coordinate and surrounding coordinates can be real-valued ones.
RGB values are computed at those sample coordinates. By aggregating the RGB values, we
can make an image patch. After adopting random group sampling, we can attach GAN and
perceptual loss to the LIIF. We denote this model as the LIIF-GAN-S (simple). We denote
the structure of the LIIF-GAN-S in Fig.4. The loss function for the LIIF-GAN-S is

LLIIF−GAN−S = |IPgt − IPrecon|+ log(D(IPgt))
+ log(1−D(IPrecon))+ |V GG(IPgt)−V GG(IPrecon)|,

(2)

where IPgt is the ground truth image patch and D is the discriminator. V GG is the VGG19
feature extractor and

IPrecon = Reshape( fθ (z∗k , [xk − v∗k ,ck])k∈iRGS), (3)

where Reshape is a reshape function that converts a set of RGB values into an image patch.
k is the sampling index, and iRGS is the set of random ground sampling indexes.

3.3 Maintaining the Internal Structure of Image Components
The introduction of GAN and perceptual loss can enable the production of a realistic image
representation. However, unfortunately, it corrupts the internal structure of image compo-
nents. It is known that L1 loss can learn the internal structure of image components better
than GAN or perceptual loss[2, 29]. To address the problem, we suggest LIIF-GAN. The
structure of the LIIF-GAN is shown in Fig.2. In the LIIF-GAN, we divide the reconstruction
part into two by using two decoders. In the first part, a decoder is trained by L1 loss only.
The loss function for the first decoder is

LD1 = |IPgt − IPrecon fθ1
|, (4)

where IPrecon fθ1
means the image patch from the first decoder. As a result, the output of the

first decoder can preserve the internal structure of image components well. In the second
part, a decoder generates incremental RGB values for fine details. The outputs of the first
and second decoders are added together and fed to the GAN and perceptual loss computa-
tion module. Gradient blocking is used so that the gradient calculated by the GAN and the
perceptual loss cannot affect the first decoder. The loss function for the second decoder is

LD2 = log(D(IPgt))+ log(1−D(IPrecon fθ1
+ IPrecon fθ2

))

+|V GG(IPgt)−V GG(IPrecon fθ1
+ IPrecon fθ2

)|. (5)
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As a result, the second decoder can only learn how to improve the fidelity of the images.
Using the two decoders, the internal image structure training and image fidelity training do
not disturb each other.

Additionally, we use the features from different layers of the encoder for each decoder to
enrich the diversity of input features. We use mid-layer features for the first decoder and last-
layer features for the second decoder, respectively. The final loss function for the LIIF-GAN
is

LLIIF−GAN = LD1 +LD2 , (6)

which is minimized for training the model.

4 Experiments

4.1 Evaluation
A continuous representation can be expected to have infinite precision and can represent an
arbitrary high-resolution image. Thus, we evaluate the performance of the model through the
super resolution task. For quantitative evaluation, the Peak Signal-to-Noise Ratio (PSNR),
Structural SIMilarity (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS)[33]
are used. The PSNR and SSIM are suitable for measuring structural similarity. In contrast,
the LPIPS is more suitable for measuring the fidelity of an image.

Two datasets are used for experiments. One is the DIV2K dataset[1], and the other is the
CelebA-HQ dataset[12]. The DIV2K consists of 1000 images in 2K resolution. We follow
the original division of the DIV2K dataset. Training is done on the DIV2K training set with
800 images. For testing, we use the DIV2K validation set with 100 images, which is the
same as in the previous paper[4]. The CelebA-HQ dataset consists of over 30,000 people’s
faces selected from the CelebA dataset[18]. The resolution of each image is 1024x1024. We
use 25,000 images for training and 5,000 images for testing.

4.2 Implementation details
For the encoder, we used the EDSR[17] structure as a baseline, like in the previous paper[4].
The sizes of inputs are 48x48 and 64x64 for the DIV2K and CelebA-HQ experiments, re-
spectively. The two decoders have the same structure that consists of a 5-layer MLP with
ReLU activation and 256 hidden nodes in each layer. The output is a single RGB value. For
the discriminator, we used a CNN model. We set the size of the patch that can be made
by random group sampling equal to the input size. A pretrained VGG19 network is used to
calculate the perceptual loss. We used the Adam[13] optimizer with an initial learning rate
10−4. The learning rate decays by a factor of 0.5 every 200 epochs. The experimental setting
of the LIIF is the same as the LIIF-GAN, except for the model architecture. For previous
fully convolutional neural networks(FCNN) based methods (EDSR, ESRGAN, and Real-
ESRGAN), we followed previous papers’ implementations (refer to [17], [29], and [30],
respectively).

4.3 Quantitative and Qualitative Comparisons with Prior Works
Training and Test setting During the training on the DIV2K dataset, the target is the
cropped original image and the input is the down-scaled image with various scale fac-
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Table 1: The PSNR, SSIM, and LPIPS scores on the DIV2K dataset. The up and down ar-
rows mean that the higher and lower scores are better, respectively. N/A means not available.
The bold texts denote the best scores. The texts in red indicate the best scores among the
models adopting GAN. Note that there is a perception-distortion tradeoff[2], meaning that
adoption of GAN can degrade the PSNR/SSIM scores.

Upscale x2 x3 x4 x4.5 x5 x5.5 x6 x6.5 x7

Bicubic
PSNR↑ 31.0366 28.2531 26.6941 26.1249 25.6483 25.2262 24.8671 24.5336 24.2403
SSIM↑ 0.9012 0.8274 0.7657 0.7398 0.7170 0.6964 0.6790 0.6628 0.6489
LPIPS↓ 0.1436 0.2624 0.3407 0.3708 0.3989 0.4244 0.4463 0.4686 0.4878

EDSR(x4)
PSNR↑ N/A N/A 29.2875 26.2120 25.5856 25.2278 24.9007 24.5659 24.2661
SSIM↑ N/A N/A 0.8402 0.7509 0.7234 0.7016 0.6828 0.6655 0.6507
LPIPS↓ N/A N/A 0.1933 0.2988 0.3308 0.3806 0.4212 0.4521 0.4760

ESRGAN(x4)
PSNR↑ N/A N/A 25.4396 23.9158 23.9467 23.1217 23.4173 22.5057 21.8826
SSIM↑ N/A N/A 0.7336 0.6920 0.6913 0.6640 0.6683 0.6356 0.6124
LPIPS↓ N/A N/A 0.1062 0.2658 0.3364 0.3921 0.4310 0.4670 0.4956

Real-ESRGAN(x4)
PSNR↑ N/A N/A 24.7586 24.4056 24.1763 23.9371 23.6608 23.3091 22.9488
SSIM↑ N/A N/A 0.7083 0.6885 0.6776 0.6651 0.6511 0.6348 0.6203
LPIPS↓ N/A N/A 0.2055 0.2231 0.2297 0.2409 0.2540 0.2646 0.2732

LIIF
PSNR↑ 34.6661 30.9782 29.0269 28.3275 27.7319 27.2199 26.7880 26.3909 26.0445
SSIM↑ 0.9431 0.8864 0.8339 0.8104 0.7887 0.7685 0.7505 0.7340 0.7191
LPIPS↓ 0.0596 0.1416 0.2025 0.2251 0.2463 0.2673 0.2865 0.3033 0.3183

LIIF-GAN-S
PSNR↑ 32.2442 27.9404 26.2872 25.6141 25.0529 24.6961 24.3560 24.0136 23.7083
SSIM↑ 0.9215 0.8173 0.7528 0.7228 0.6949 0.6739 0.6541 0.6353 0.6176
LPIPS↓ 0.0251 0.0634 0.1017 0.1180 0.1350 0.1510 0.1673 0.1829 0.1993

LIIF-GAN-SF
PSNR↑ 32.1692 28.2658 26.3703 25.6986 25.1800 24.7327 24.3701 24.0206 23.7445
SSIM↑ 0.9102 0.8248 0.7533 0.7227 0.6969 0.6725 0.6520 0.6329 0.6163
LPIPS↓ 0.0252 0.0614 0.1026 0.1186 0.1347 0.1535 0.1701 0.1870 0.2002

LIIF-GAN
PSNR↑ 32.2508 28.6562 26.4465 25.8676 25.4848 24.9758 24.6364 24.3327 24.1331
SSIM↑ 0.9131 0.8344 0.7555 0.7295 0.7091 0.6832 0.6638 0.6466 0.6339
LPIPS↓ 0.0242 0.0651 0.0996 0.1149 0.1351 0.1476 0.1641 0.1807 0.1959

tors(from x1.0 to x0.25). The model is trained for 1000 epochs with a batch size of 128
and 20 repetitions. In the test, the target is the original image and the input is the resized one
with various scale factors. The scale factors are x2, x3, x4, x4.5, x5, x5.5, x6, x6.5, and x7.
During the training on the CelebA-HQ dataset, the target is the 256x256 image and the input
is the down-scaled one with various scale factors(from x1.0 to x0.25). The model is trained
for 200 epochs with a batch size of 128 and 20 repetitions. In the test, the input is a 64x64
image and the target is a scaled image. The scale factors are x2, x3, x4, x4.5, x5, x5.5, x6,
x6.5, and x7. Note that the FCNN based methods support a fixed scale super resolution only,
so the input image is resized with a bicubic algorithm before the super resolution process.
For example, if we want to recover a 320x320(=64x5) target from a 64x64 input using the
FCNN based model, the input is resized to 80x80(=320/4) via a bicubic algorithm.
Quantitative Comparisons Table 1 shows the scores of each model on the DIV2K dataset.
First, the results of EDSR, ESRGAN, and Real-ESRGAN, which target fixed-scale super-
resolution, show good results on the trained scale but very large performance degradation on
the untrained scales. On the other hand, it can be seen that LIIF-GAN works better even on
the untrained scales. This confirms that LIIF-GAN performs well on continuous scale image
representation. Second, the LPIPS scores of the LIIF-GAN are superior to those of the LIIF
on all scales. Since LPIPS is an indicator to measure perceptual quality, the LIIF-GAN is
better for realistic image representation than the LIIF. Note that the LIIF-GAN has lower
PSNR/SSIM scores than the LIIF because improving perceptual quality often leads to a sac-
rifice of PSNR/SSIM scores. It is well-known as a perception-distortion tradeoff[2]. Third, it
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Figure 5: Qualitative comparison on the DIV2K dataset. Various scale super resolution
results of each model are shown. Zoom in for a better comparison.

can be seen that the LIIF-GAN is superior to the existing GAN-related methods(ESRGAN,
Real-ESRGAN). The LIIF-GAN shows better PSNR/SSIM and LPIPS scores than the ES-
RGAN and Real-ESRGAN on all scales. In summary, the LIIF-GAN can reconstruct real-
istic images better on a continuous scale than conventional methods, including the LIIF (the
SOTA method). Because the results from the CelebA-HQ dataset are similar, we include a
table about the results in the supplementary material due to page limitation.
Qualitative Comparisons Through Fig.5 and Fig.6, we can understand the quantitative re-
sults more clearly. The results of the EDSR and LIIF preserve the main edges well but
lose the detailed textures. As a result, the output images are not realistic. On the contrary,
the results of the LIIF-GAN well preserve the detailed textures. The results of ESRGAN
and Real-ESRGAN are well reconstructed on the x4 scale(training scale), but reconstruction
quality is significantly degraded on the out-of-training scales. Conversely, the LIIF-GAN
works well on out-of-training scales.

4.4 Ablation Studies

As mentioned in Sec.3.3, in the LIIF-GAN, we use a novel structure that uses multiple de-
coders and encoder features. We try to show the effect of using the multiple decoders and
encoder features through ablation studies. We made a model that uses only a single decoder.
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Figure 6: Qualitative comparison on the CelebA-HQ dataset. Various scale super resolution
results of each model are shown. Zoom in for a better comparison.

Figure 7: The architecture of the LIIF-GAN-SF. The detail explanations are described in
Sec. 4.4.

We called this model the LIIF-GAN-S (Simple). We also made another model that uses the
last layer feature as the common input of the multiple decoders. We called this model the
LIIF-GAN-SF (Single Feature). We denote the structure of the LIIF-GAN-SF in Fig.7. We
did the same experiments as the LIIF-GAN.
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Table 1, Fig.5, and Fig.6 contain the results of the above ablation models. Both ablation
models have worse PSNR/SSIM scores than the LIIF-GAN, while the LPIPS scores are
similar. It means that the absence of the multiple decoders and encoder features degrades the
local structure of images. We can see it more clearly in Fig.6. If we focus on the eyes(iris),
the eyes’ structure is collapsed in the results of the LIIF-GAN-S and LIIF-GAN-SF. On the
contrary, the results of the LIIF-GAN preserve the eyes’ structure well.

5 Limitation
The proposed LIIF-GAN has two decoders, one for reconstructing a well-structured image
and the other for generating plausible fidelity. The second decoder is responsible for creating
high-frequency information to be added to the first decoder’s output. We found some artifacts
and less plausible fidelity in the generated details of images when the scaling factor was about
two times bigger than that used in the training. It is a problem that originated from the GAN
because the GAN has an essential problem of instability when used outside of the learned
domain. If there is another available method for fidelity training, it can be incorporated into
the LIIF-GAN architecture. Finding an appropriate method for fidelity training is a candidate
for future research.

6 Conclusion
This paper presents a Local Implicit Image Function–GAN (LIIF-GAN) for learning the rep-
resentation of realistic images on a continuous scale. Utilizing two decoders with different
layer features of an encoder, the LIIF-GAN improves the fidelity and maintains the structure
of the images. We designed the architecture of the LIIF-GAN to have separate training paths
for information of different frequencies. The first decoder tries to maintain the structure
of images, which is related to low-frequency information. On the other hand, the second
decoder generates plausible fidelity in the images, which is related to high-frequency infor-
mation. With the LIIF-GAN, we can make a well-structured, realistic image representation
on a continuous scale for general images. Experiments demonstrated that the LIIF-GAN
could learn a more realistic image representation than the previous SOTA method (LIIF).
We also showed that the new architecture of the LIIF-GAN is very effective in learning re-
alistic image representation by comparing it with two ablated models. We think this new
architecture can be adapted when applying the GAN network.
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