IGARASHI ET AL.: MULTI-TASK CURRICULUM LEARNING

Multi-task Curriculum Learning
Based on Gradient Similarity

Hiroaki Igarashi’ "DENSO CORPORATION
hiroaki.igarashi.j3m@jp.denso.com Tokyo, Japan

Kenichi Yoneiji' 2DENSO IT Laboratory
kenichi.yoneji.j3v@jp.denso.com Tokyo, Japan

Kohta Ishikawa? 3 Tokyo Institute of Technology
ishikawa.kohta@core.d-itlab.co.jp Tokyo, Japan

Rei Kawakami®*
reikawa@sc.e.titech.ac.jp

Teppei Suzuki?
suzuki.teppei@core.d-itlab.co.jp
Shingo Yashima?
yashima.shingo@core.d-itlab.co.jp

Ikuro Sato?3
sato.ikuro@core.d-itlab.co.jp

Abstract

Intensive studies on multi-task learning (MTL) with deep neural networks have shown
cases where both test error and computational cost can be reduced compared to single-
task learning. However, several studies have argued that a naive implementation of MTL
often degrades test performance due to gradient conflict, in which task-wise gradients
have a negative inner product. These studies also invented ways to modify the gradients
and eliminate the conflict. One concern about these methods is that the obtained solu-
tion is no longer optimal for the original objective due to the modification. In this paper,
we propose a multi-task curriculum learning based on gradient similarity (MCLGS) to
mitigate the negative impact of gradient conflicts while retaining the original objective
toward the end of the training. We adopt a simple curriculum strategy that gives more
weights to minibatches exhibiting fewer gradient conflicts in the early stage of training.
We experimentally confirmed that MCLGS outperforms existing MTL methods, such as
MGDA, PCGrad, GradDrop, and CAGrad, on BDD100K and NYUv?2 datasets.

1 Introduction

Robotics applications, such as autonomous driving (AD) and advanced driver-assistance sys-
tems (ADAS), require multiple perceptional tasks [5, 7, 28], for example, object detection

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
* Work done while at DENSO IT Laboratory.

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

Citation
Citation
{Feng, Haase-Sch{ü}tz, Rosenbaum, Hertlein, Glaeser, Timm, Wiesbeck, and Dietmayer} 2020

Citation
Citation
{Yu, Chen, Wang, Xian, Chen, Liu, Madhavan, and Darrell} 2020{}

2 IGARASHI ET AL.: MULTI-TASK CURRICULUM LEARNING

91+ 92) o (Early
sz®# (1, 92)

Update 6 Ji g

4Enhanced

v
i
v
[
[}

_ Taskl backward

«

i Forward o u
2 W Taskl output

Later S .
Task2 backward Traini Gl b J; Gl
Input — tralnlng D 2 N TR :\gj
step t 7/~ Normal MTL—X o
Task2 output \ (Treat them equally)
(a) An overview of MCLGS (b) Weighting gradient in MCLGS

Figure 1: (a) An overview of MCLGS; g; and g; denote the i-th and j-th task-wise gradients
on a shared network among tasks (shown as pink blocks). In MCLGS, a pair of task-wise
gradients (g;,§;) are weighted by the weight wi ; (shown in purple) and used to update the
model parameters 6. (b) The design of the weight w! ;- This depends on the amount of gra-
dient conflict measured by the cosine similarity between task-wise gradients and the training
step ¢. It is designed such that the weight becomes higher than 1 to encourage training if
the cosine similarity is high; otherwise, it will be lower than 1 to suppress training in the
early stage of training (top in (b)). As learning progresses, wf i will not depend on cosine
similarity and will always be around 1, which is consistent with the naive MTL update rule
(bottom in (b)).

and semantic segmentation. If these tasks are implemented as separate models, the system
will be complex and can involve redundant computations between each models. Multi-task
learning (MTL) [6, 26, 30], which shares a portion of the network between multiple tasks, is
a possible solution to simplify the system and reduce the complexity.

In MTL, if the magnitude of task-wise gradients is unbalanced during training, the trained
model could be biased toward specific tasks. Therefore, several methods for balancing loss
function have been proposed [3, 12]. However, if only the balancing loss function is applied,
each task may have adverse effects on the other in MTL. One possible cause of this is gra-
dient conflict, in which the inner product between the gradients of tasks is negative. In this
case, since the parameter updates of each task are oriented in different directions, conflicting
gradients sometimes lead to insufficient solution for each task.

Several studies [4, 16, 21, 29] have tackled this problem. For example, PCGrad [29]
manipulated gradients such that the conflicting components were removed, and only the
orthogonal components of each gradient were extracted and used for the update. Although
such methods can remove gradient conflicts, a converged solution is no longer optimal for the
original objective due to gradient manipulation. Specifically, if the conflicting components
of gradients have a large difference in magnitude, then these components contain significant
information. However, conventional methods simply discard this information by removing
these components.

In this paper, we propose a multi-task curriculum learning based on gradient similarity
(MCLGS), which mitigates the negative impact of gradient conflicts between tasks. MCLGS
introduces a curriculum learning strategy [2] that removes hard samples in the early stage of
training in multi-task learning. In single-task learning (STL), the difficulty of samples are
generally determined by how hard input is to classify. For MTL, we redefine the difficulty by
amount of gradient conflicts. Thus, in MCLGS, samples which generates gradient conflicts,

Citation
Citation
{Crawshaw} 2020

Citation
Citation
{Vandenhende, Georgoulis, Vanprotect unhbox voidb@x protect penalty @M {}Gansbeke, Proesmans, Dai, and Vanprotect unhbox voidb@x protect penalty @M {}Gool} 2021

Citation
Citation
{Zhang and Yang} 2021

Citation
Citation
{Chen, Badrinarayanan, Lee, and Rabinovich} 2018

Citation
Citation
{Kendall, Gal, and Cipolla} 2018

Citation
Citation
{Chen, Ngiam, Huang, Luong, Kretzschmar, Chai, and Anguelov} 2020

Citation
Citation
{Liu, Liu, Jin, Stone, and Liu} 2021

Citation
Citation
{Sener and Koltun} 2018

Citation
Citation
{Yu, Kumar, Gupta, Levine, Hausman, and Finn} 2020{}

Citation
Citation
{Yu, Kumar, Gupta, Levine, Hausman, and Finn} 2020{}

Citation
Citation
{Bengio, Louradour, Collobert, and Weston} 2009

IGARASHI ET AL.: MULTI-TASK CURRICULUM LEARNING 3

are considered as hard to train in multi-task learning, and are downweighted in the early
stage of training. However, these samples are gradually included as training progresses.
Specifically, to validate our idea, we present a simple and somewhat heuristic function that
determines the weights for each gradient given the gradient similarity and the training step.
As shown in Figure 1, the function is designed such that the conflicting (aligned) gradients
are downweighted (more weighted) in the early stages, and any type of gradients is treated
equally at later stages; that is, the weights for each gradient approach a fixed value. By ap-
plying these strategies, MCLGS mitigates the negative impact of gradient conflicts without
gradient manipulation, and the update rule of MCLGS is consistent with that of naive MTL
at the end. Thus, MCLGS retains the original objective toward the end of the training and
helps to converge on a better solution than conventional methods. We confirmed experimen-
tally that MCLGS outperforms existing MTL methods, such as MGDA [21], PCGrad [29],
GradDrop [4], and CAGrad [16], on NYUvV2 [22] and BDD100K datasets [28]. Although ex-
isting methods do not improve the performance from the baseline on the BDD100K dataset,
MCLGS performs even better than the baseline.

2 Related Work

As categorized in [26], existing approaches in MTL belong to either architectural methods
or optimization strategy methods. An example of architectural methods is a self-attention
mechanism adopted to obtain better features shared among tasks [17]. In MTL, a backbone,
which works as a feature extractor, is generally shared among multiple tasks as shown in
Figure 1 (a). However in [8, 18, 19], task-wise backbones were implemented individually
and connected via connection layers for sharing features. For a head, such as the classifier
or regressor, a cascaded structure was proposed to share features of the early stages [27,
31]. These methods manually introduced new connections between task-specific networks.
To automatically find such connections during training, neural architecture search has also
been utilized [10, 23]. Since MCLGS does not depend on a specific architecture, it can be
combined with these methods.

In contrast, several approaches focus on the optimization strategy of MTL. For example,
a loss balancing scheme was proposed based on homoscedastic uncertainty [12] or the norm
of the gradient [3]. Similar to MCLGS, some studies [9, 15, 20] introduced a learning
strategy inspired by the curriculum [2] that orders training data from easy ones to hard ones.
For example, [9] and [15] prioritized tasks during training depending on the difficulty of
the task. [20] divided tasks into strongly and weakly correlated groups, and applied transfer
learning from the former to the latter. Since these methods are not motivated by the reduction
of the gradient conflict, MCLGS can also be combined with them.

Several gradient manipulation methods [4, 16, 21, 29] have been proposed to remove
gradient conflicts. For example, PCGrad [29] removed the conflicting gradient components
of two tasks by simply selecting one task and subtracting the conflicting component for the
other task. This was repeated for random combinations of the tasks. Only the orthogonal
component for the other task is used for the parameter update. CAGrad [16] modified gradi-
ents to be a Pareto-optimal point around the original objective. However, if we manipulate
the gradients, the retained solution may no longer be optimal since the objective function
will be deviated from the original one. Meanwhile, MCLGS retains the original objective
toward the end of the training and helps to converge on a better solution than these methods.

Citation
Citation
{Sener and Koltun} 2018

Citation
Citation
{Yu, Kumar, Gupta, Levine, Hausman, and Finn} 2020{}

Citation
Citation
{Chen, Ngiam, Huang, Luong, Kretzschmar, Chai, and Anguelov} 2020

Citation
Citation
{Liu, Liu, Jin, Stone, and Liu} 2021

Citation
Citation
{Silberman, Hoiem, Kohli, and Fergus} 2012

Citation
Citation
{Yu, Chen, Wang, Xian, Chen, Liu, Madhavan, and Darrell} 2020{}

Citation
Citation
{Vandenhende, Georgoulis, Vanprotect unhbox voidb@x protect penalty @M {}Gansbeke, Proesmans, Dai, and Vanprotect unhbox voidb@x protect penalty @M {}Gool} 2021

Citation
Citation
{Liu, Johns, and Davison} 2019

Citation
Citation
{Gao, Ma, Zhao, Liu, and Yuille} 2019

Citation
Citation
{Misra, Shrivastava, Gupta, and Hebert} 2016

Citation
Citation
{Ruder, Bingel, Augenstein, and S{T1o }gaard} 2019

Citation
Citation
{Xu, Ouyang, Wang, and Sebe} 2018

Citation
Citation
{Zhang, Cui, Xu, Yan, Sebe, and Yang} 2019

Citation
Citation
{Guo, Lee, and Ulbricht} 2020

Citation
Citation
{Sun, Panda, Feris, and Saenko} 2020

Citation
Citation
{Kendall, Gal, and Cipolla} 2018

Citation
Citation
{Chen, Badrinarayanan, Lee, and Rabinovich} 2018

Citation
Citation
{Guo, Haque, Huang, Yeung, and Fei-Fei} 2018

Citation
Citation
{Li, Yan, Wei, Dong, Liu, and Zha} 2017

Citation
Citation
{Sarafianos, Giannakopoulos, Nikou, and Kakadiaris} 2017

Citation
Citation
{Bengio, Louradour, Collobert, and Weston} 2009

Citation
Citation
{Guo, Haque, Huang, Yeung, and Fei-Fei} 2018

Citation
Citation
{Li, Yan, Wei, Dong, Liu, and Zha} 2017

Citation
Citation
{Sarafianos, Giannakopoulos, Nikou, and Kakadiaris} 2017

Citation
Citation
{Chen, Ngiam, Huang, Luong, Kretzschmar, Chai, and Anguelov} 2020

Citation
Citation
{Liu, Liu, Jin, Stone, and Liu} 2021

Citation
Citation
{Sener and Koltun} 2018

Citation
Citation
{Yu, Kumar, Gupta, Levine, Hausman, and Finn} 2020{}

Citation
Citation
{Yu, Kumar, Gupta, Levine, Hausman, and Finn} 2020{}

Citation
Citation
{Liu, Liu, Jin, Stone, and Liu} 2021

4 IGARASHI ET AL.: MULTI-TASK CURRICULUM LEARNING

Algorithm 1 MCLGS’s Update Rule
Require: Model parameter 0, # of current training step t

1: fori=0,...,(N—1) do

8i V[gT"eiT]Tﬁi(ev 91')

g,‘ — Véﬁ,‘(é, 91)
end for
fori=0,...,(N—2)do

for j=(i+1),...,(N—1)do

wi.j < f(8i.8):1)

end for

end for

return update Af = N N=T) Z 2 IJV,IHW (gi+gj)

R I AN A o

._
4

3 Method

MTL aims to train a partially shared network to minimize the objectives of all tasks
simultaneously. Considering that we have N tasks, then the loss function for MTL is given
as follows:

N—1
‘C(eae()?"'ae/\’—l): Zﬁi(eaei)> (])
=0

where £(0, 6;) denotes the loss function of the i-th task, and § and 6; represent the shared
parameters and specific parameter of the i-th task, respectively (i.e., the so-called head, such
as the classifier and regressor). Hence, 0 := (é, 0o, ..,6y—1) refers to all parameters in
the network. Here, g; := Vg E,-(é, 0;) denotes a batch gradient of the i-th task, and 1) is the
learning rate. Thus, the update rule in MTL is as follows:

1 N—1
=0-ny) & 2
i=0

MCLGS focuses on g; := V4 L£(8,6;), which is a batch gradient of the shared parameter
6. While conventional methods [16, 21, 29] removed gradient conflicts by manipulating the
gradients, MCLGS introduces a curriculum learning strategy based on directional similarity
into multi-task learning. Curriculum learning [2] is a training paradigm that orders training
data from easy to hard, like a human learning strategy. By introducing this strategy, the
learner can update parameters toward better local minima in the early stages and can reach a
better solution.

To introduce this strategy in an MTL setting, MCLGS considers samples that produce
more gradient conflicts as harder samples. In addition, we ignore these hard samples in the
early stages of training by downweighting their gradients. In MCLGS, the curriculum is
controlled by the weighting function f, and the batch gradient is weighted by w ., which
is an output of the weighting function f. An entire process of MCLGS’s update rule is
represented in Algorithm 1. First, task-wise gradients of shared parameters are extracted.
Second, a relative weight among tasks is calculated by the weighting function f based on
the number of gradient conflicts between the i-th and j-th tasks and the training step . More

Citation
Citation
{Liu, Liu, Jin, Stone, and Liu} 2021

Citation
Citation
{Sener and Koltun} 2018

Citation
Citation
{Yu, Kumar, Gupta, Levine, Hausman, and Finn} 2020{}

Citation
Citation
{Bengio, Louradour, Collobert, and Weston} 2009

IGARASHI ET AL.: MULTI-TASK CURRICULUM LEARNING 5

details of the weighting function f will be described later. We define the relative weight w/ j
as follows: '

wi = f(8,8),1). 3)

Here, note that a curriculum is defined by f based on not only gradients but also the training
step . Specifically, f is designed such that the output increases according to the similarity
in the beginning part of training. In the later training stages, the output will be independent
of the similarity (i.e., the output approaches a fixed value). Finally, the batch gradient is
weighted by wﬁ I and the parameter 6 is updated. The update rule of MCLGS is given as

follows:
1 N-2 N—1

Y wii(gi+e))-)

0 =06- n
()lOJH—l

3.1 Weighting Function f

As formulated in [11], curriculum learning comprises scoring and pacing functions. The
scoring function defines how hard the fed sample is, while the pacing function denotes how
many hard samples are accepted in the current training step. These two functions also need
to be introduced in the weighting function f. Additionally, following the definition of cur-
riculum learning, the weighting function f should be defined as a monotonically increasing
function. In this paper, we use the following function for the weighting function:

f(8i,8j;t) = tanh (s (g, g;) p (1)) + 1, (5)

where s denotes the scoring function, and p represents the pacing function. Moreover, similar
to [24], we use a cosine similarity given in the following equation as the scoring function:

8i-§j

6
RIEE ©

s(8i,8)) =

The pacing function p is designed to approach 0 according to the increasing . For example,
it could be a linear decay, which is given as follows:

p(t) = max (ap — tAa,0). 7
Conversely, it could be an exponential decay, given as follows:
p(t) =aor,. (8)

An example of the weighting function f is shown in Figure 2. The angle of f will be
smoother according to the increasing ¢, and finally, it will converge at 0, which signifies a
fixed weight (wi-? ;= 1. Additionally, ag and Aa for the linear decay and 7! for the expo-
nential decay are hyperparameters, and should be tuned to the target model architecture or
the target dataset appropriately. These hyperparameters could be one of the limitations of
MCLGS, but it is a common problem in many MTL methods[3, 4, 16]. Regarding how to
select the hyperparameters, we will experimentally show the parametric sensitivity studies
in Section 4.2.1. Additionally, since this paper focuses on introducing curriculum learning
based on gradient similarity in MTL, we selected the simple and somewhat heuristic weight-
ing function f. Thus, the f in this paper might not be best solution and finding better f might
be future work.

Citation
Citation
{Hacohen and Weinshall} 2019

Citation
Citation
{Suteu and Guo} 2019

Citation
Citation
{Chen, Badrinarayanan, Lee, and Rabinovich} 2018

Citation
Citation
{Chen, Ngiam, Huang, Luong, Kretzschmar, Chai, and Anguelov} 2020

Citation
Citation
{Liu, Liu, Jin, Stone, and Liu} 2021

6 IGARASHI ET AL.: MULTI-TASK CURRICULUM LEARNING

—— 0 epoch(t=0k)
1.7541 20 epoch(t=46k)
—— 25 epoch(t=69k)
1.50 1 —— 27 epoch(t=92k)
—— 30 epoch(t=115k)

.00 T T T T T T T
-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
cosine similarity

Figure 2: An example of weighting function f on the BDD100K dataset. The angle of f
will be smoother according to the increasing ¢, and finally, it will converge at 0, signifying a
fixed weight (w}, ; = D). Note that linear decay (Eq. 7) is used for the pacing function, where
ag =40, and Aa = 3e — 4.

4 Evaluation

We evaluated MCLGS in a common MTL setting and the AD/ADAS MTL setting. For the
common MTL setting, we chose the NYUv2 [22] dataset, which consists of three computer
vision tasks: semantic segmentation, depth estimation, and surface normal prediction. For
the AD/ADAS setting, we selected the BDD100K [28] dataset, which contains two computer
vision tasks: object detection and semantic segmentation.

4.1 Setup
4.1.1 The NYUv2 Dataset

We followed the evaluation setup in [16]. The single-task learning (STL) baseline model
is SegNet [1], as described in [16], and the MTL baseline model is SegNet with MTAN
[17]. Conventional methods and MCLGS are applied to the MTL baseline model. For the
conventional methods, we evaluated MGDA [21], PCGrad [29], GradDrop [4], and CAGrad
[16]. Additionally, the combination of MCLGS and CAGrad shows the compatibility of
MCLGS. For the training setup, we apply the SGD optimizer with a learning rate of 0.007,
a momentum of 0.9 and a weight decay of 0.0001 because the adaptive learning rate on the
Adam optimizer could be incompatible with MCLGS. The results with the Adam optimizer,
which is used in the evaluation setup [16], is reported in the supplementary material. Since
MGDA [21] and CAGrad [16] changed the balance between task objectives, we applied
uncertainty weigh loss [12] for loss balancing on all methods to achieve a fair comparison.
We trained the model three times using each different random seed and calculated the average
accuracy. Similar to [16], we also used the average per-task performance drop Am. While
Am is directly calculated for all metrics in [16], we first calculated the average per-metric
performance drop in task i. Thus, Am; = %Zf:] (—=1)lii (M j — My ;) /Mp.; j, where m and
b represent the target method and the STL baseline, respectively; K denotes the number of
metrics on task i; and /; = 1 if a higher value satisfies a criterion M; ; for the metric j of task
i better; otherwise, [; = 0. We calculated the average of m; for all the tasks to get Am. We
used the STL baseline with the Adam optimizer as a baseline for Am calculation.

Citation
Citation
{Silberman, Hoiem, Kohli, and Fergus} 2012

Citation
Citation
{Yu, Chen, Wang, Xian, Chen, Liu, Madhavan, and Darrell} 2020{}

Citation
Citation
{Liu, Liu, Jin, Stone, and Liu} 2021

Citation
Citation
{Badrinarayanan, Kendall, and Cipolla} 2017

Citation
Citation
{Liu, Liu, Jin, Stone, and Liu} 2021

Citation
Citation
{Liu, Johns, and Davison} 2019

Citation
Citation
{Sener and Koltun} 2018

Citation
Citation
{Yu, Kumar, Gupta, Levine, Hausman, and Finn} 2020{}

Citation
Citation
{Chen, Ngiam, Huang, Luong, Kretzschmar, Chai, and Anguelov} 2020

Citation
Citation
{Liu, Liu, Jin, Stone, and Liu} 2021

Citation
Citation
{Liu, Liu, Jin, Stone, and Liu} 2021

Citation
Citation
{Sener and Koltun} 2018

Citation
Citation
{Liu, Liu, Jin, Stone, and Liu} 2021

Citation
Citation
{Kendall, Gal, and Cipolla} 2018

Citation
Citation
{Liu, Liu, Jin, Stone, and Liu} 2021

Citation
Citation
{Liu, Liu, Jin, Stone, and Liu} 2021

IGARASHI ET AL.: MULTI-TASK CURRICULUM LEARNING 7

4.1.2 The BDD100K Dataset

For the STL baseline model, we used FCOS-RT [25] for object detection. For semantic
segmentation, we combined ResNet50, the feature pyramid network (FPN) used in FCOS-
RT [25], and a segmentation head in [13]. For the MTL models, we applied an FCOS head
and a segmentation head in [13] to ResNet50 and an FPN used in FCOS-RT [25], which
were shared among tasks. For the loss function, we followed [25] for object detection and
used the cross entropy and dice loss weighted by 0.5 for semantic segmentation.

Although the BDD100K dataset comprises two tasks, each dataset is separated, and la-
bels are not annotated on the same image (this setting is more closer to the actual operation
than the common MTL setting). Therefore, if each sample could have a ground truth of
only one task, then the loss function for the other sample would be missing. A missing loss
function of the task means that the learner studies each task alternatively, which may cause
catastrophic forgetting [14] during training. To avoid this, we pre-trained STL models for
each task and utilized their outpus to train MTL model as pseudo labels for each one. More-
over, we always fed the ground truths and pseudo labels to the MTL setting. Therefore, the
loss function of this setting is formulated as follows:

L = Wet WodLgt,od + Wngsngr,ss + WpseudoWodeseudo.,od + WpseudoWsstseudn.,Ssa 9

where gt and pseudo represent the ground truth and the pseudo labels, respectively, and
od and ss denote object detection and semantic segmentation, respectively. Additionally,
w denotes the weights of loss functions for each label and task type. Here, we searched
these weights without any MTL methods and used wg; = 0.8, Wpgeugo = 0.2, wog = 1.7 and
wss = 0.3. Note that Ly oq and Lg; s, could be missing, but Lygeudo,.0d and Lpgseudo,oq always
exist. To generate the pseudo label, we used thresholds for the teacher model output. The
threshold is 0.3 for object detection, 0.2 for non-maximum suppression, and 0.8 for semantic
segmentation.

Further details of the setup are as follows. We used the SGD optimizer with 0.9 momen-
tum, 0.0001 weight decay, and we enabled Nestrov. The batch size was 16, and the total
epoch was 30. We used a multi-step learning rate schedule with 0.1 times learning decay at
the 16-th, 22-th, 28-th epoch. The initial learning rate was 0.01, and we used the learning
rate warmup with a 500 step. We reduced the gradient norm below 10. For the evaluation
metrics, we used COCO mAP@0.5:0.95 for object detection and mloU for semantic seg-
mentation. Similar to NYUv?2, we trained the model three times with each different random
seed and calculated the average accuracy. We applied MCLGS and conventional methods,
such as MGDA [21], PCGrad [29], GradDrop [4], and CAGrad [16].

4.2 Results
4.2.1 Parametric Sensitivity Study

As mentioned in Section 3.1, the hyperparameters of the pacing function is one of the lim-
itations in MCLGS. These hyperparameters could have a large impact regarding the perfor-
mance. Thus, first, we performed a parametric sensitivity study for the pacing function. In
this paper, we used linear decay (Eq. 7) for the pacing function. Therefore, the pacing func-
tion comprises two hyperparameters: ag and Aa. Since Aa should be correlated with ag, we
introduced the following definition of Aa:

ap
Aa =

(10)

b
Tiltotal

Citation
Citation
{Tian, Shen, Chen, and He} 2020

Citation
Citation
{Tian, Shen, Chen, and He} 2020

Citation
Citation
{Kirillov, He, Girshick, and Doll{á}r} 2017

Citation
Citation
{Kirillov, He, Girshick, and Doll{á}r} 2017

Citation
Citation
{Tian, Shen, Chen, and He} 2020

Citation
Citation
{Tian, Shen, Chen, and He} 2020

Citation
Citation
{Kirkpatrick, Pascanu, Rabinowitz, Veness, Desjardins, Rusu, Milan, Quan, Ramalho, Grabska-Barwinska, etprotect unhbox voidb@x protect penalty @M {}al.} 2017

Citation
Citation
{Sener and Koltun} 2018

Citation
Citation
{Yu, Kumar, Gupta, Levine, Hausman, and Finn} 2020{}

Citation
Citation
{Chen, Ngiam, Huang, Luong, Kretzschmar, Chai, and Anguelov} 2020

Citation
Citation
{Liu, Liu, Jin, Stone, and Liu} 2021

8 IGARASHI ET AL.: MULTI-TASK CURRICULUM LEARNING

rt
2 1 12
0 - -0.50 £+ 1.03 -
u 20 | -0.04 £0.31 -1.514+0.67 -1.45+0.61
0 40| -0754+059 -2.12+0.48 -1.03+0.18
80 | -1.18 £ 046 -1.33+0.31 -0.78 +0.89

Table 1: A parametric sensitivity study of the pacing function p for Am% (lower is better) on
the NYUv2 dataset. The performance is more sensitive regarding r; than ag. Note that the
format of table values is (mean -+ stderr).

It
4 3 2 1 172
0 - - - -3.27 £ 0.17 -

40 | -3.88+0.26 -394+0.12 -3.79+0.28 -3.914+0.27 -3.36+0.27

u 80 | -396+£0.29 -3.794+0.35 -3.86+0.36 -3.76+0.18 -3.58+0.21
O 120 | -3.76 £036 -3.93+£024 -4.03+0.27 -3.83+030 -3.38+0.19
160 | -3.80 £ 0.20 -4.004+0.23 -3.78+0.19 -4.02+029 -3.72+0.21

200 | -3.88 = 0.22 NaN NaN -3.78 £0.19 -3.43 £0.18

Table 2: A parametric sensitivity study of the pacing function p for Am% (lower is better)
on the BDD100OK dataset. The performance is more sensitive regarding r; than ap. NaN
represents the diverged cases due to the large weight of the curriculum. Note that the format
of table values is (mean =+ stderr).

where ., represents the total training steps, and r; denotes the decreasing ratio, which is
a hyperparameter in this definition. For example, r; = 1 means that when the training is
finished, the curriculum also converges at the fixed weight. Similarly, r, = 1/2 means that
the curriculum converges in the middle of training.

Tables 1 and 2 show the sensitivity study results regarding ag and r; on the NYUv2 and
BDD100K datasets, respectively. In both cases, the performance is more sensitive regarding
ry than ag. To maximize performance, ag and Aa should be appropriate values. However,
most cases with the curriculum outperform cases without the curriculum, shown as ag = 0,
ry = 1. Additionally, ag and r, should have larger values than those of the NYUv2 dataset,
meaning that the pacing function should be slow.

4.2.2 Main Results

We present the results of the NYUv2 dataset in Table 3. MCLGS achieves the smallest av-
erage per-task performance drop Am of -2.12%. If just focusing on single-task performance,
PCGrad and MGDA [21] are the best for depth estimation and surface normal prediction,
respectively. However, these method can not improve the performance of the other tasks
well. This could be because they change the objectives by gradient manipulation and their
retained solution is biased toward specific tasks. In contrast, MCLGS is consistent with the
original objectives and achieves the better performance of all tasks. Furthermore, the un-
certainty weigh loss [12] is suitable with MCLGS and improves the performance compared
to equal weighting. Additionally, MCLGS with CAGrad improves the performance even
better. We set ag and Aa to 60 and Se — 4, respectively, based on the parametric sensitivity
study. Moreover, as shown in Tables 1 and 3, MCLGS with several hyperparameter settings

Citation
Citation
{Sener and Koltun} 2018

Citation
Citation
{Kendall, Gal, and Cipolla} 2018

IGARASHI ET AL.: MULTI-TASK CURRICULUM LEARNING 9

Segmentation Depth Surface Normal

#P. Method Weighting ~ Accuracy? Error) Angle Distance] Within 7° 1 (meaﬁriqjderr)
mloU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30 ’

3 STL Baseline - 3933 6455 0.5785 0.2339 26.12 2044 2804 5456 66.84
|77 MILBascline cqual 4088 66.14 05489 02290 2783 2323 2363 4893 6215 129%0.60
7 (MTANTI7]) uncert. 3895 64.76 0.5423 0.2185 2655 21.67 25.69 5212 6520 -0.50 & 1.03
177 MGDA 21] equal 2052 53.16 0.6635 02532 2600 2045 28.07 5458 6696 14.69+0.17
: uncert. 3642 63.54 0.5912 0.2286 2551 [19.95] [28.89][55.70][68.06] 0.71 + 0.84
177 PCGraapo) caual 4073 6624 05558 02075 2770 2307 2570 4925 6249 1244066
i - uncert. 39.05 65.10 [0.5366][0.2163] 2636 21.35 2638 52.81 6570 -1.40 + 0.56
177 GradDrop(s] S0l 4056 6613 05538 0225T 2790 2335 2326 4870 6199 147006
uncert. 39.18 64.87 05397 02201 2642 21.52 2604 5242 6544 -0.81 +0.42
177 CAGrad[1g) awal 3939 6527 03578 02270 2588 2061 2769 5434 6695 -121%082
uncert. 3751 64.05 05722 02339 2593 2057 27.77 5440 6699 0.78 +£0.28
177 MCLGS (oursy 0ual 40986643 05720 02358 2751 2296 2396 4944 6265 198 043
uncert. 4020 65.63 05429 02174 2603 21.11 26.68 53.32 6626 -2.12+048
| 77 CAGrad + equal [41.37][66.47] 05513 02230 [25.50] 2022 2826 55.16 67.75 |-3.37+0.72
MCLGS (ours) uncert. 39.72 65.65 0.5470 0.2222 2551 20.15 2847 5533 67.82 -2.74 £0.29

Table 3: Multi-task learning resuluts of the NYUv2 dataset: MCLGS with uncertainty weigh
loss [12] outperforms all the other methods. MCLGS with CAGrad improves the perfor-
mance even better. For the loss weighting scheme, "equal" represents no loss balancing and
"uncert" denotes the uncertainty weigh loss [12]. #P denotes the relative model size com-
pared to the vanilla SegNet. The best average result for each method is marked in bold. The
best average result among all multi-task methods is annotated with boxes.

OD SS
#P. Method mAP@.50:.95 1 mloU 1 Am%.
(mean =+ stderr) (mean =+ stderr) (mean = stderr)
2 STL baseline 25.37 + 7.31e-4 49.66 + 1.53e-3 -

1.15 MTL baseline 26.16 4+ 1.48e-4 51.43 4+ 4.53¢-4 -3.33+£0.17
1.15 MGDA [21] 15.33 + 6.24e-4 46.61 + 1.37e-3 22.85 4+ 0.40
1.15 PCGrad [29] 26.14 4+ 1.56e-4 51.37 4+ 3.16e-4 -3.25+0.23
1.15 GradDrop [4] 26.09 +4.78e-5 51.42 4 5.66e-4 -3.20 £ 0.21
1.15 CAGrad [16] 25.37 & 5.64e-5 50.70 & 7.30e-4 -1.05 £ 0.23
1.15 MCLGS (ours) 26.31 4+ 1.99¢-4 51.82 + 8.13e-4 -4.03 + 0.27

Table 4: Multi-task learning results of the BDD100K dataset: MCLGS outperforms all the
other methods. Following the evaluation format of [16], #P denotes the relative model size
compared to the STL baseline. The best average result among all multi-task methods is
marked in bold.

achieves the better average per-task performance Am than existing methods.

We present the results of the BDD100K dataset in Table 4. MCLGS achieves the best
accuracy in both object detection and semantic segmentation even including standard errors.
Meanwhile, the accuracy of the conventional methods is below the naive MTL setting. This
might be because of pseudo labels, which are less accurate than ground truth labels. Hence,
gradients of pseudo labels could conflict with those of ground truth labels. Here, conven-
tional methods, such as PCGrad, remove the gradient conflicts whether the gradient comes
from the ground truth or pseudo label. Thus, conventional methods may update parameters
in the wrong direction. Meanwhile, since MCLGS just downweights a pair of conflicted gra-
dients, it may clean up samples that contain inaccurate labels in this setting. We set ag and
Aa to 120 and 4.3e — 4, respectively, based on the parametric sensitivity study. Moreover,

Citation
Citation
{Liu, Johns, and Davison} 2019

Citation
Citation
{Sener and Koltun} 2018

Citation
Citation
{Yu, Kumar, Gupta, Levine, Hausman, and Finn} 2020{}

Citation
Citation
{Chen, Ngiam, Huang, Luong, Kretzschmar, Chai, and Anguelov} 2020

Citation
Citation
{Liu, Liu, Jin, Stone, and Liu} 2021

Citation
Citation
{Kendall, Gal, and Cipolla} 2018

Citation
Citation
{Kendall, Gal, and Cipolla} 2018

Citation
Citation
{Sener and Koltun} 2018

Citation
Citation
{Yu, Kumar, Gupta, Levine, Hausman, and Finn} 2020{}

Citation
Citation
{Chen, Ngiam, Huang, Luong, Kretzschmar, Chai, and Anguelov} 2020

Citation
Citation
{Liu, Liu, Jin, Stone, and Liu} 2021

Citation
Citation
{Liu, Liu, Jin, Stone, and Liu} 2021

10 IGARASHI ET AL.: MULTI-TASK CURRICULUM LEARNING

as shown in Tables 2 and 4, MCLGS with all hyperparameter settings achieves the better
average per-task performance Am than existing methods.

5 Conclusion

In this paper, we proposed MCLGS, which mitigates the negative impact of gradient con-
flicts between tasks. MCLGS introduces a curriculum learning strategy [2] that utilizes only
easy samples in the early stages of training in multi-task learning. Conventional methods do
not update parameters in the corresponding direction for the original objective because they
manipulate gradients to remove the conflicts. Meanwhile, MCLGS just downweights sam-
ples that generate gradient conflicts in the early stage of training, and any type of gradient is
treated equally at later stages, which is consistent with the naive MTL update rule. Therefore,
MCLGS retains the original objective toward the end of the training and helps to converge at
a better solution than conventional methods. As a result, we confirmed experimentally that
MCLAGS is superior to the conventional methods and compatible with them, and it can reduce
the average per-task performance drop Am on the NYUv2 [22] and BDD100K datasets [28].

References

[1] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convo-
lutional encoder-decoder architecture for image segmentation. [EEE transactions on
pattern analysis and machine intelligence, 39(12):2481-2495, 2017.

[2] Yoshua Bengio, Jérdme Louradour, Ronan Collobert, and Jason Weston. Curriculum

learning. In Proceedings of the 26th annual international conference on machine learn-
ing, pages 41-48, 2009.

[3] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm:
Gradient normalization for adaptive loss balancing in deep multitask networks. In
International Conference on Machine Learning, pages 794-803. PMLR, 2018.

[4] Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yun-
ing Chai, and Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models
with gradient sign dropout. Advances in Neural Information Processing Systems, 33:
2039-2050, 2020.

[5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3213-3223, 2016.

[6] Michael Crawshaw. Multi-task learning with deep neural networks: A survey. arXiv
preprint arXiv:2009.09796, 2020.

[7] Di Feng, Christian Haase-Schiitz, Lars Rosenbaum, Heinz Hertlein, Claudius Glaeser,
Fabian Timm, Werner Wiesbeck, and Klaus Dietmayer. Deep multi-modal object detec-
tion and semantic segmentation for autonomous driving: Datasets, methods, and chal-
lenges. IEEE Transactions on Intelligent Transportation Systems, 22(3):1341-1360,
2020.

Citation
Citation
{Bengio, Louradour, Collobert, and Weston} 2009

Citation
Citation
{Silberman, Hoiem, Kohli, and Fergus} 2012

Citation
Citation
{Yu, Chen, Wang, Xian, Chen, Liu, Madhavan, and Darrell} 2020{}

IGARASHI ET AL.: MULTI-TASK CURRICULUM LEARNING 11

(8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L Yuille. Nddr-cnn: Layerwise
feature fusing in multi-task cnns by neural discriminative dimensionality reduction. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 3205-3214, 2019.

Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic
task prioritization for multitask learning. In Proceedings of the European conference
on computer vision (ECCV), pages 270-287, 2018.

Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. Learning to branch for multi-task
learning. In International Conference on Machine Learning, pages 3854-3863. PMLR,
2020.

Guy Hacohen and Daphna Weinshall. On the power of curriculum learning in training
deep networks. In International Conference on Machine Learning, pages 2535-2544.
PMLR, 2019.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to
weigh losses for scene geometry and semantics. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 7482-7491, 2018.

Alexander Kirillov, Kaiming He, Ross Girshick, and Piotr Dolldr. A unified ar-
chitecture for instance and semantic segmentation. http://presentations.
cocodataset.org/COCO17-Stuff-FAIR.pdf, 2017.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. Pro-
ceedings of the national academy of sciences, 114(13):3521-3526, 2017.

Changsheng Li, Junchi Yan, Fan Wei, Weishan Dong, Qingshan Liu, and Hongyuan
Zha. Self-paced multi-task learning. In Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient

descent for multi-task learning. Advances in Neural Information Processing Systems,
34, 2021.

Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning
with attention. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 1871-1880, 2019.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch
networks for multi-task learning. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3994-4003, 2016.

Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and Anders Sggaard. Latent
multi-task architecture learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 48224829, 2019.

http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf
http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf

12

IGARASHI ET AL.: MULTI-TASK CURRICULUM LEARNING

(20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

Nikolaos Sarafianos, Theodore Giannakopoulos, Christophoros Nikou, and Ioannis A
Kakadiaris. Curriculum learning for multi-task classification of visual attributes. In
Proceedings of the IEEE International Conference on Computer Vision Workshops,
pages 2608-2615, 2017.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization.
Advances in neural information processing systems, 31, 2018.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmen-
tation and support inference from rgbd images. In European conference on computer
vision, pages 746—760. Springer, 2012.

Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate Saenko. Adashare: Learning
what to share for efficient deep multi-task learning. Advances in Neural Information
Processing Systems, 33:8728-8740, 2020.

Mihai Suteu and Yike Guo. Regularizing deep multi-task networks using orthogonal
gradients. arXiv preprint arXiv:1912.06844, 2019.

Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: A simple and strong anchor-
free object detector. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2020.

Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans,
Dengxin Dai, and Luc Van Gool. Multi-task learning for dense prediction tasks: A
survey. IEEE transactions on pattern analysis and machine intelligence, 2021.

Dan Xu, Wanli Ouyang, Xiaogang Wang, and Nicu Sebe. Pad-net: Multi-tasks guided
prediction-and-distillation network for simultaneous depth estimation and scene pars-
ing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 675-684, 2018.

Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu,
Vashisht Madhavan, and Trevor Darrell. Bdd100k: A diverse driving dataset for hetero-
geneous multitask learning. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 2636-2645, 2020.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and
Chelsea Finn. Gradient surgery for multi-task learning. Advances in Neural Infor-
mation Processing Systems, 33:5824-5836, 2020.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transactions on
Knowledge and Data Engineering, 2021.

Zhenyu Zhang, Zhen Cui, Chunyan Xu, Yan Yan, Nicu Sebe, and Jian Yang. Pattern-
affinitive propagation across depth, surface normal and semantic segmentation. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,

pages 4106-4115, 2019.

