
Multi-task Curriculum Learning
Based on Gradient Similarity

Hiroaki Igarashi1, Kenichi Yoneji1, Kohta Ishikawa2, Rei Kawakami3, Teppei Suzuki2, Shingo Yashima2, and Ikuro Sato23

Background

Robotics applications such as autonomous driving require

multiple perceptional tasks.

(e.g. Object Detection and Semantic Segmentation)

⇒ Multi-task learning (MTL)

Related Works

Proposed method (MCLGS)

Experimental Results

=Multi-task Learning × Curriculum Learning*

The NYUv2 Dataset [22]

1DENSO Corp., 2DENSO IT Lab., 3Tokyo Tech

*It removes hard samples in the early stage of training and makes the solution better.

PCGrad [29]

PCGrad manipulates gradients such that the conflicting
components are removed.

A converged solution is no longer optimal for
original objective due to gradient manipulation.

e.g. when each task has a big gap in magnitude of gradients

MTL Model (e.g. 2 task)

A major challenge of MTL: gradient conflict

Loss weight: 𝑤𝑖,𝑗
𝑡 = tanh 𝑠 𝑔1, 𝑔2 𝑝(𝑡) + 1

𝑠 𝑔1, 𝑔2 =
𝑔1 ∙ 𝑔2
𝑔1 𝑔2

𝑝 𝑡 = max 𝑎0 − 𝑡∆𝑎, 0

MCLGS doesn’t manipulate gradients but just downweights

samples that generate gradient conflicts in the early stage of

training.

* 𝑎0,∆𝑎: hyper parameters

Shared DNN: ෨𝜃

Task Specific DNN: 𝜃1

Task Specific DNN:𝜃2

input

Task1 output

Task2 output

In shared DNN (෨𝜃), since the parameter updates of each

task are oriented different directions, conflicting gradients

sometimes lead to insufficient performance for each task.

A Problem of PCGrad

𝑔1 =
𝑑𝐿1

𝑑 ෨𝜃

𝐿𝑖 : Loss of task i, 𝑔𝑖 =
𝑑𝐿𝑖

𝑑𝜃
: Gradient of task i,

𝑁: #of task, 𝜂: learning rate

𝜃′ ← 𝜃 − 𝜂
1

𝑁

𝑖=0

𝑁

𝑔𝑖

Naïve update rule

MTL shares a portion of the network between
multiple tasks, and reduce the complexity.

𝑔2 =
𝑑𝐿2

𝑑 ෨𝜃

Gradient components can point in opposite directions between tasks.

𝑔1 𝑔2
𝑔1′ 𝑔2′

𝑔1
′ = 𝑔1 −

𝑔1 ∙ 𝑔2
𝑔2

2
𝑔2 𝑔2

′ = 𝑔2 −
𝑔1 ∙ 𝑔2
𝑔1

2
𝑔1

Conflicting components

𝜃′ ← 𝜃 − 𝜂
1

𝑁(𝑁 − 1)

𝑖=0

𝑁−2

𝑗=𝑖+1

𝑁−1

𝑤𝑖,𝑗
𝑡 (𝑔𝑖 + 𝑔𝑗)

𝑔1

𝑔2

𝑔1

𝑔2

𝑔1′

𝑔2′

w/o PCGrad w/ PCGrad

Acquired gradient by PCGrad is much different from
the original one.

𝑔 =
𝑔1 + 𝑔2
2

𝑔′ =
𝑔1′ + 𝑔2′

2

MCLGS’s update rule

The BDD100K Dataset [28]

Methods

Improvement from STL Baseline %↑

Δseg Δdepth Δnormal
Δm

(mean±stderr*)

STL Baseline 0.00 0.00 0.00 0.00±0.00

MTL Baseline -0.32 6.39 -4.59 0.49±1.03

MGDA [21] -4.48 0.03 2.33 -0.71±0.84

PCGrad [29] 0.07 7.37 -3.25 1.40±0.56

GradDrop [4] 0.06 6.30 -3.92 0.81±0.42

CAGrad [16] 0.63 3.24 -0.28 1.20±0.82

MCLGS (ours) 1.94 6.59 -2.18 2.12±0.48

CAGrad [16] + MCLGS (ours) 4.08 4.68 1.34 3.37±0.72

*The model is trained over 3 random seeds, and the average and the stderr are reported.

improvement from STL baseline %↑

methods Δod Δseg
Δm

(mean±stderr*)

STL baseline 0.00 0.00 0.00±0.00

MTL baseline 3.10 3.56 3.33±0.17

MGDA [21] -39.57 -6.14 -22.85±0.40

PCGrad [29] 3.06 3.44 3.25±0.23

GradDrop [4] 2.85 3.55 3.20±0.21

CAGrad [16] 0.00 2.10 1.05±0.23

MCLGS (ours) 3.71 4.34 4.03±0.27

𝑔𝑖 𝑔𝑗

Small More weighted

(𝑤1,2
𝑡 > 1)

Early

Training

step 𝑡

𝑔𝑖

𝑔𝑗Large

Less weighted

(𝑤1,2
𝑡 < 1)

𝑔𝑖 𝑔𝑗
Toward naïve update

(Treat them equally)

𝑤1,2
𝑡 ≈ 1

Later

𝑔𝑖

𝑔𝑗

𝑤1,2
𝑡

2
(𝑔1 + 𝑔2)

𝑤1,2
𝑡

2
(𝑔1 + 𝑔2)

𝑤1,2
𝑡

2
(𝑔1 + 𝑔2) 𝑤1,2

𝑡

2
(𝑔1 + 𝑔2)

Amount of gradient conflicts

-0.1

-0.05

0

0.05

0.1

0 50000 100000 150000

C
o

si
n

e
 S

im
il
a
ri

ty

Training step t

0

0.5

1

1.5

2

0 50000 100000 150000

W
i,t j

Training step t

The weight depends on the similarity in the early stage of training,

but converges to a fixed value of 1 at the end of training.

#705

