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Background

Robotics applications such as autonomous driving require 

multiple perceptional tasks.

(e.g. Object Detection and Semantic Segmentation)

⇒ Multi-task learning (MTL)

Related Works

Proposed method (MCLGS)

Experimental Results

=Multi-task Learning × Curriculum Learning*

The NYUv2 Dataset [22]

1DENSO Corp., 2DENSO IT Lab., 3Tokyo Tech

*It removes hard samples in the early stage of training and makes the solution better.

PCGrad [29]

PCGrad manipulates gradients such that the conflicting 
components are removed.

A converged solution is no longer optimal for 
original objective due to gradient manipulation.

e.g. when each task has a big gap in magnitude of gradients

MTL Model (e.g. 2 task)

A major challenge of MTL: gradient conflict

Loss weight: 𝑤𝑖,𝑗
𝑡 = tanh 𝑠 𝑔1, 𝑔2 𝑝(𝑡) + 1

𝑠 𝑔1, 𝑔2 =
𝑔1 ∙ 𝑔2
𝑔1 𝑔2

𝑝 𝑡 = max 𝑎0 − 𝑡∆𝑎, 0

MCLGS doesn’t manipulate gradients but just downweights

samples that generate gradient conflicts in the early stage of 

training.

* 𝑎0,∆𝑎: hyper parameters

Shared DNN: ෨𝜃

Task Specific DNN: 𝜃1

Task Specific DNN:𝜃2

input

Task1 output

Task2 output

In shared DNN ( ෨𝜃), since the parameter updates of each 

task are oriented different directions, conflicting gradients 

sometimes lead to insufficient performance for each task.

A Problem of PCGrad

𝑔1 =
𝑑𝐿1

𝑑 ෨𝜃

𝐿𝑖 : Loss of task i, 𝑔𝑖 =
𝑑𝐿𝑖

𝑑𝜃
: Gradient of task i,

𝑁: #of task, 𝜂: learning rate

𝜃′ ← 𝜃 − 𝜂
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Naïve update rule

MTL shares a portion of the network between 
multiple tasks, and reduce the complexity.

𝑔2 =
𝑑𝐿2

𝑑 ෨𝜃

Gradient components can point in opposite directions between tasks.

𝑔1 𝑔2
𝑔1′ 𝑔2′
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Conflicting components

𝜃′ ← 𝜃 − 𝜂
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w/o PCGrad w/ PCGrad

Acquired gradient by PCGrad is much different from 
the original one.

𝑔 =
𝑔1 + 𝑔2
2

𝑔′ =
𝑔1′ + 𝑔2′

2

MCLGS’s update rule

The BDD100K Dataset [28]

Methods

Improvement from STL Baseline %↑

Δseg Δdepth Δnormal
Δm

(mean±stderr*)

STL Baseline 0.00 0.00 0.00 0.00±0.00 

MTL Baseline -0.32 6.39 -4.59 0.49±1.03 

MGDA [21] -4.48 0.03 2.33 -0.71±0.84 

PCGrad [29] 0.07 7.37 -3.25 1.40±0.56 

GradDrop [4] 0.06 6.30 -3.92 0.81±0.42 

CAGrad [16] 0.63 3.24 -0.28 1.20±0.82 

MCLGS (ours) 1.94 6.59 -2.18 2.12±0.48 

CAGrad [16] + MCLGS (ours) 4.08 4.68 1.34 3.37±0.72

*The model is trained over 3 random seeds, and the average and the stderr are reported.

improvement from STL baseline %↑

methods Δod Δseg
Δm

(mean±stderr*)

STL baseline 0.00 0.00 0.00±0.00 

MTL baseline 3.10 3.56 3.33±0.17 

MGDA [21] -39.57 -6.14 -22.85±0.40 

PCGrad [29] 3.06 3.44 3.25±0.23 

GradDrop [4] 2.85 3.55 3.20±0.21 

CAGrad [16] 0.00 2.10 1.05±0.23 

MCLGS (ours) 3.71 4.34 4.03±0.27 
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Amount of gradient conflicts
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The weight depends on the similarity in the early stage of training, 

but converges to a fixed value of 1 at the end of training.
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