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In this supplementary document, we report follows:
A. Additional experimental results of the NYUv2 dataset [6]
B. Visualization results of the cosine similarity and weight

C. The problem of gradient manipulation

A Additional Experimental Results

In the main paper, we reported the experimental results of the NYUv2 dataset [6], where the
optimizer is changed from Adam to SGD, because the adaptive learning rate in the Adam
optimizer is not suitable with MCLGS. However, this change in the evaluation setup [3]
could be unfair for the other existing methods. Thus, we also evaluated each methods with
the Adam optimizer following the setting in [3]. Additionally, Am is recalculated using the
result of the STL baseline with the Adam optimizer.

We present the full results on the NYUv2 dataset in Table 1. The Am of MCLGS with
CAGrad using SGD reaches -5.01% and outperforms all the other methods, while that of
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Table 1: Multi-task learning resuluts of the NYUv2 dataset: MCLGS with CAGrad outper-
forms all the other methods. MCLGS without CAGrad is better than PCGrad and GradDrop.
For the loss weighting scheme, "equal" represents no loss balancing, and "uncert" denotes
the uncertainty weigh loss [2]. #P denotes the relative model size compared to the vanilla
SegNet. The best average result for each method is marked in bold. The best average result
among all multi-task methods is annotated with boxes.

1.77 MCLGS (ours)
SGD

MCLGS using the SGD optimizer is -3.71% which is better than PCGrad and GradDrop. Ad-
ditionally, since the adaptive learning rate of Adam is incompatible with MCLGS, MCLGS
is more compatible with SGD than Adam.

Additionally, we found that MGDA with uncertainty weigh loss performs effectively.
While MGDA with equal weighting is biased against surface normal prediction, the uncer-
tainty weigh loss improves the performance of semantic segmentation and depth estimation.
This may be because MGDA breaks the balance of loss functions to maintain the Pareto-
optimal, while uncertainty weigh loss restores the balance. This is reasonable because CA-
Grad, which introduces a balance constraint of loss function into MGDA, also performs
well.

B Visualization Results of the Cosine Similarity and
Weight
To confirm that the weight wﬁ’ ; is generated depending on the cosine similarity, we visualized

the cosine similarity and the weight generated by MCLGS in Figures 1 and 2. As designed,
wﬁ ; fluctuates a lot depending on the cosine similarity but converges around 1.0 as learning
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Figure 1: Visualization results of cosine similarity and wﬁ, ; with increasing training step 7 of
the NYUv2 dataset. The weight is generated depending on the cosine similarity. Segmen-
tation, depth, and normal represent semantic segmentation, depth estimation, and surface
normal prediction, respectively. Raw values are plotted as points, while lines represent the
exponential mean average (EMA) of each value.
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Figure 2: Visualization results of cosine similarity and w! ij with i 1ncreasmg training step ¢
of the BDD100K dataset. The weight is generated depending on the cosine similarity. Raw
values are plotted as points while lines represent the exponential mean average (EMA) of
each value.

progresses because MCLGS includes samples generating gradient conflicts at the end of the
training. Additionally, we observed that the cosine similarity also tends to converge to O,
which means that the direction of task-wise gradients is orthogonal.

As shown in Figure 1, the cosine similarity between semantic segmentation and surface
normal estimation is higher than that at the beginning of the NYUv2 dataset. This means
that the gradient of depth estimation highlights a different direction from that of the others.
One possible reason could be that semantic segmentation and surface normal prediction are
prone to using object boundary information, while depth estimation is not. Furthermore, the
model might be trained to take this information initially.
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(a) Successful example (b) Failed example
Figure 3: Examples that PCGrad [7] works well and not. (a) Projected average gradient g
is still similar to the original average gradient g, while gradient conflict is removed. (b)
Projected gradient g is far from the original average gradient g’ even though gradient conflict
is removed. In this case, the conflicted component of the task gradient g; is dominant on
the average gradient because the norm of g; is much larger than that of g;. However, this
component is eliminated by PCGrad.

C The Problem of Gradient Manipulation

In the main paper, we described that gradient manipulation leads to non-optimal solution for
the original objectives. In this section, we will give the details of gradient manipulation and
the case updating parameters into non-optimal direction.

For example, PCGrad [7] manipulated gradients such that the conflicting components
were removed, and only the orthogonal components of each gradient were extracted and
used for the update. Gradient manipulation of PCGrad is formulated as follows:

N (A

S8 g
where g; and g; denote batch gradients of the i-th and j-th task, respectively. Note that Eq. 1
represents the manipulation for g;, but PCGrad also applied this manipulation for g; as well.
Figure 3 shows examples of gradient projection by PCGrad. As shown in Figure 3 (a), if the
magnitude of task-wise gradients is similar, the projected average gradient g is also similar
to the original average gradient g’. Therefore, the retained solution is around the original
objectives in this case. However, as shown in Figure 3 (b), if the magnitude of task-wise
gradient is much different, the retained solution is far from the original objectives. In this
case, although conflicted component of g; is dominant on the average gradient g, PCGrad
eliminated this component to remove gradient conflict.
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