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Abstract

Video highlight detection (VHD) is a crucial yet challenging problem which aims
to identify the interesting moments in untrimmed videos. The key to this task lies in
effective video representations that jointly pursue two goals, i.e., 1) cross-modal repre-
sentation learning and 2) fine-grained feature discrimination. To issue 1), the dominant
VHD models adopt cross-attention based transformer to learn audio-visual information
and inter-modality alignment. They always assume that multi-modal signals are syn-
chronized which may not hold in practice due to spurious noise and appearance shift in
untrimmed videos. To relieve this problem, we propose a cross-modality co-occurrence
encoding by considering not only single visual/audio but asynchronous cross-modal cor-
relations. We also explore the additional global contextual information abstracted from
local region to further promote the inter-modality learning. To issue 2), to enlarge the
discriminative power of feature embedding, we propose a hard-pairs guided contrastive
learning (HPCL) scheme to reflect intrinsic semantic representation. A hard-pairs sam-
pling strategy is employed in HPCL to mine the hard segment samples for improving
feature discrimination and providing significant gradient information. Extensive exper-
iments conducted on two benchmarks demonstrate the effectiveness and superiority of
our proposed methods compared to other state-of-the-art methods.
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Figure 1: Schematic depiction of multi-modal representation learning. (a) within-modality
learning with cross-attention. (b) Our proposed method explores the inter and intra-relations
by measuring intra-visual, intra-audio and cross-modality co-occurrence. And HPCL is in-
troduced for feature discriminative.

1 Introduction

In recent years, posting well-edited video shining moments on social platforms, e.g.Youtube,
Tiktok, has become our daily routine. Due to the labor for cropping untrimmed videos,
video highlight detection task has drawn extensive attention from the research community.
The goal of this task is to localize the highlight segments and trim shining moments from
untrimmed long videos automatically, which has a wide range of downstream applications
such as video summarization [17, 32] and detection [23, 34].

Most approaches make sorts of efforts to discriminate highlight and non-highlight clips.
Pair-based approaches [18, 20, 31, 42] assumed that there exists distinguishable appearances
between highlight and background segments. A ranking model was trained based on pairs
(highlight, non-highlight) to rank segment scores and select shining moments [6, 40, 45].
[1, 17, 33] developed an audio-visual network to assemble multi-modal representations, indi-
cating that better representation modeling benefits more for highlight detection performance.
Therefore, an essential question can be asked: How to fully exploit video representations?

Intuitively, it should not only (1) capture multi-modality contextual information, but also
(2) be well distinguishable to inter-segments. To issue (1), a main stream of efforts delves
into effective feature learning, e.g., cross-modal signals fusion [1, 17, 24]. As shown in Fig-
ure 1(a) and (b), there are two directions on handing multi-modal data[1, 9, 33]. The first is
modeling cross-modality representations by cross-attention modules (Figure 1 (a)) such as
[1, 9, 33]. However, these methods are sub-optimal for exploiting the complex relationships
between inter-modality since they are based on the assumption that multiple signals are syn-
chronized, which may not hold in practice with spurious noise and indistinct correspondence
between these modalities. With regard to issue (2), prior studies [20, 31, 42] employ rank-
ing models to facilitate segment pairs discrimination. They only push away the dissimilar
pairs by ranking loss and do not reflect intrinsic semantic representation. Moreover, since
there exists highly similar content for consistent video segments, it is essential to focus on
the distinction between highlight segments and its surrounding non-highlight clips.

To address the above challenges, this paper goes deeper into designing visual-audio ar-
chitectures by two views: (1) cross-modal relations alignment and learning and (2) inter-
segment feature discrimination. We propose a novel visual-audio framework for highlight
detection. Specifically, in addition to extract the modal-wise information by self-attention
mechanism, we explore the dependencies between within-modality features and exclude
the unrelated clues to facilitate the specialized characteristic of inter-segment alignment by
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cross-modality co-occurrence encoding. We further explore the additional learnable context
to enhance intra-modality representations by implicitly modeling statistics over the entire
training data. In the latter view (2), we propose a supervised dense hard-pairs guided con-
trastive loss (HPCL) for feature discrimination without requiring any additional data argu-
ment tricks as most prior works do in mainstream self-supervised works [8, 16]. This is
achieved by a) using categorical information as a contrastive factor under a supervised set-
ting and b) mining hard-pairs to provide a significant gradient contribution for enhancing
discriminative power. In a), the data samples are trained in individual videos where posi-
tive and negative query is determined by its ground truth. HPCL shapes their embedding
space in a discriminative manner by pulling in similar samples against dissimilar ones. In
b), a hard-pair mining regularization strategy is introduced to make better use of informative
video segments and let the model pay more attention to those discriminative-hard segments.

The main contributions can be summarized as follows:

• We propose a novel visual-audio VHD framework to capture intra-modality and inter-
modality representations and exploit cross-modality relations and exclude unrelated
clues for inter-segment alignment. With this simple and effective framework, semantic
representations can be learned robustly, which is important for accurately identifying
highlight segments.

• A supervised hard-pairs guided contrastive learning scheme is deployed to reflect
structural representation of video sequence. Besides, a hard-pairs mining regulariza-
tion is introduced to make better use of those discriminative-hard segments caused by
temporal consistency in video sequence.

• Extensive experiments are conducted on the YouTube Highlights and TVsum bench-
marks, and our proposed method outperforms other state-of-the-art methods. Detailed
ablation studies demonstrate the effectiveness of our novel components.

2 Related Work
Video Highlight Detection. The goal of the video highlight detection task is to predict the
highlight moments according to the semantic features on the untrimmed videos. [20, 31, 42]
treat the video highlight detection task as a pair-based ranking to select shining moments Re-
cent methods[1, 40] propose to use self-attention mechanism to capture contextual features.
These methods utilize the temporal relations between segments and achieve excellent per-
formance. Joint-VA [1] develops a cross-attention module following other works [29, 33] to
exploit cross-modal features and then utilizes noise sentinel to relieve the feature confusion.
And TCG[43] develops a low-rank audio-visual tensor fusion to capture the complex associ-
ation between two modalities. These works are usually based on the assumption that audio
and visual data are synchronized and highly correlated [22, 26]. It may not hold in practice
with indistinct correspondence between inter-modality. We utilize the segment-wise atten-
tion to selectively capture the fine-grained relations between inter-modality and dampen the
noise in both modalities.
Contrastive Learning. Many studies [7, 8, 16, 35] on unsupervised representation learn-
ing concentrate on the central concept: contrastive learning. They generate several positive
augmented version by perturbations while negative data are randomly sampled from the other
images. They typically consider contrastive learning as pre-training step and use the variant
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versions as positive samples in unsupervised setting. Different from these methods, we raise
a segment-wise dense contrastive learning scheme in the fully supervised setting with the
known categorical information for contrastive factor. We also present a hard-pairs regular-
ization strategy tailored for our video task to enlarge the discriminative power and specialize
in hard shining moments caused by temporal consistency.

3 Approach

3.1 Architecture

Given an arbitrary unedited video sequence V = {vt}T
t=1 containing T segments, each seg-

ment vt is annotated as binary label yt ∈ {0,1}, indicating whether vt contains the interesting
part about categorical moments. Models are aiming to predict the label (i.e., highlight or
non-highlight) of every segment. Our proposed method is illustrated in Figure 2. The CNN
feature extractors output the visual and audio feature separately. Then, the inter and intra-
relationships are explored through the inter and intra-modality encoding modules. Finally,
the output representations of Co-occurrence Encoding, together with the Intra-Modality fea-
tures are used to generate the segment-level confidence scores by three FC classifiers respec-
tively and obtain the final highlight detection results by the weighted sum of final scores. For
the output segment-wise representations , we utilize HPCL to compute segment-to-segment
contrast to regularize the latent embedding space.

3.2 Feature Extractor

Given an untrimmed video sequence, the visual features are extracted by a pre-trained 3D
backbone Ev, while audio information is extracted by a audio pre-trained network Ea follow-
ing the previous methods [1, 38]. The visual and audio features of each segment are then
flattened into a feature vector and are further transformed to the same embedding space with
a linear layer respectively. Thus, the visual and audio features of the whole video can be
denoted as Fv ∈ RT×d and Fa ∈ RT×d respectively. And d = 256 in this work.

3.3 Feature Encoding Module

Intra-Modality Encoding. We leverage the standard self-attention mechanism [37] to model
within-modality relations and dampen the irrelevant modality. The modality-wise attention
are deployed to embed contextual features. For either of the two modality, it models the
relation between different segments and outputs a feature sequence F̂ ∈RT×d enhanced with
temporal context. It’s not enough to just capture the relationships within the segments. Mo-
tivated by the learned query proposed by [3], we introduce a decoder to parse the uni-modal
features F̂ (omit the layer number n for clarity) and contextualize the global features where
the decoder is implemented with the pure transformer decoder. For visual stream, we for-
mulate a learnable parameters Ginit ∈ Rd as initial global context, thus implicitly mod-
eling statistics over the entire training data. This global "query" specializes in abstracting
statistics-based global embedding over all videos instead of depending on a certain global
context for the corresponding video. It is different from and complementary to the previous
attention-based multi-modal methods. In detail, the decoder takes the updated uni-modal
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Figure 2: Illustration of our proposed method. Ev and Ea extract the high-level visual
and audio features respectively and then followed the intra-modality encoding for modeling
visual and audio representation separately. In addition, the cross-modality co-occurrence
encoding is employed to exploit inter-modality relations. Lastly, for the output embeddings,
we view segment-level representation as a point, a dense contrastive learning is proposed to
shape the structural information in a discriminative manner.

features F̂ and Ginit as input. It views Ginit as query and uni-modal features F̂ as val-
ues, and then the query aggregates the uni-modal context information and abstracts global
informative representation represented as G. Finally, a straightforward method is to directly
sum the global context and video representations, which can be formulated as F̂ = F̂+G.
Similarly, in the audio stream, we perform mirroring operations on audio features, which
will not be repeated due to space reasons.

Co-occurrence Encoding. Previous works [1, 9, 17] usually utilize cross-modal encoder
to capture semantic associations based on these multi-modal signals. However, it can be
sub-optimal since these works are usually based on the assumption that multi-modal sig-
nals are synchronized which may not hold in practice due to indistinct correspondence be-
tween these modality. Additionally, the cross-attention may introduce the cluttered back-
ground and inaccurate modality content since it restricts that modal A must build corre-
lations with modal B. Our proposed multi-modality encoding method relaxes this condi-
tion to allow cases where only visual or audio modal is useful. This simple and effective
module is useful to robustly learn semantic representation and is complementary to intra-
modality encoding. Ideally, we would like the proposed method can dampen the noise
and selectively choose effective information from multi-modality instead of all in them. It
can relieve the inter-modality asynchronization by learning to ignore the cross-modal seg-
ment features with spurious noise and augment the intimate ones. Our cross-modality co-
occurrence encoding is built upon the attention mechanism in canonical transformer decoder
and takes the full sequence of segment embeddings corresponding to all visual and audio
features F̂v = { f v

1′ , ..., f v′
T .}, F̂a = { f a

1′ , ..., f a′
T .} as input. Assume the sequence modalities in-

put Fva = { f v
1′ , ..., f v′

T , f a′
1 , ..., f a′

T } ∈R2T×d , we alternatively contextualize the co-occurrence

Citation
Citation
{Badamdorj, Rochan, Wang, and Cheng} 2021

Citation
Citation
{Chen, Li, Yu, Elprotect unhbox voidb@x protect penalty @M  {}Kholy, Ahmed, Gan, Cheng, and Liu} 2020{}

Citation
Citation
{Hong, Huang, Li, and Zheng} 2020



6 LI ET AL. : PROBING VISUAL-AUDIO REPRESENTATION FOR VHD VIA HPCL

information for each modality. In the visual modality, the process can be defined as,

Qv
dec =W q

decFv
n, Kva

dec =W k
decFva, Sva

dec =W s
decFva (1)

F̃v = softmax(
Qv
decKva

dec
T

√
dk

)Sva
dec (2)

where W q
dec,W

k
dec,W

s
dec are learnable parameters and used to linearly transform the input

to the query, key and value. The other decoder is also applied to exploit the associations
between the audio features F̂a and the sequence modality features Fva and then generate the
co-occurrence representations F̃a.

3.4 Hard-Pairs Guided Contrastive Learning
Segment-wise Contrastive Loss. Our HPCL replaces the current image-wise training
strategy with a segment-to-segment intra-video dense paradigm. The HPCL is applied to
regularize the output feature embedding space using categorical information as contrastive
factor. In the training phase, given a target video sequence containing T segments with labels
{yi}T

i=1, we first aggregate the input embeddings F̂v, F̂a into the segment-wise representations
F̂= { f̂i}T

i=1 ∈RT×2d . Then, for the segment query with label y, the positive keys are the other
segments labeled y while the negative keys are the segments belonging to the other class. Our
dense segment-level loss aims to contrast positive keys against negative ones. Formally, it
can be defined as,

LHPCL =
1
|T | ∑

q∈F̂

1
ΓP

q
∑

k+∈ΓP
q

− log
exp(q · k+/τ)

exp(q · k+)+ ∑
k−∈ΓN

q

exp(q · k−/τ)
(3)

where the video sequence contains T segments, ΓP
q ,Γ

N
q represent the segment representation

sets of positive and negative keys for the query q ∈ F̂ separately.
Hard-Pairs Regularization Strategy. Previous methods [19, 25, 30] verify that mining
negative samples are likely to be more useful and provide significant gradient information.
In our fully supervised setting, the negative data in contrastive learning are true negative
exactly. Thus, we would ask what makes a good negative samples in supervised learning?
The most useful negative samples are ones that the embedding currently believes to be similar
to the query since the hardest points are those close to the query, and are expected to have
a high propensity to have the same label. In order to improve the feature discriminating
power in HPCL, we first sample these hard-pairs for video sequence and then utilize the
ranking loss to optimize them. Specifically, given a video sequence with T segments and
positive masks {yi ∈ {0,1}}T

i=1, the water-sheds formulated as the boundaries from positives
vs. negatives are identified and denoted as {c j}W

j=1. Here c j is the index of video segments
and W represents the number of the water-sheds. For a water-shed c j, we sample indexes
according to c j including ϒ1 = {c j−k}L

k=1 and ϒ2 = {c j+k}L
k=1, where it would be replaced

with c j if c j − k < 0. L = 3 is the region size. The hard-pairs are represented by ϒ =
{(c j −k,c j +k)}L

k=1. The loss is employed to optimize these hard-pairs, which is formulated
as,

Lrank = ∑
p∈ϒ

max(margin−d(p),0) (4)

where d(p) represents the Euclidean distance between the features indexed by the pairs p.
margin is a hyper-parameter. We set margin = 0.7.
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Category Uni-Modality Multi-Modality
RRAE [41] LIM-s [39] Video2GIF [13] LSVM [32] SL[40] MN[17] Joint-VA [1] TCG [43] Ours Ours*

dog 0.49 0.579 0.308 0.60 0.708 0.537 0.645 0.553 0.678 0.690
gymnastics 0.35 0.417 0.335 0.41 0.532 0.528 0.719 0.626 0.681 0.660

parkour 0.50 0.670 0.540 0.61 0.772 0.689 0.808 0.709 0.791 0.890
skating 0.25 0.578 0.554 0.62 0.725 0.709 0.620 0.691 0.740 0.741
skiing 0.22 0.486 0.328 0.36 0.661 0.583 0.732 0.601 0.719 0.690
surfing 0.49 0.651 0.541 0.61 0.762 0.638 0.783 0.598 0.822 0.811

Average 0.383 0.564 0.464 0.536 0.693 0.614 0.718 0.630 0.739 0.747

Table 1: Experimental results comparisons of highlight detection on YouTube Highlight
dataset in terms of mAP. Notice that the model ‘Ours’ utilizes 3D CNN [14] as visual fea-
ture extractor following previous work [1, 17], while ‘Ours*’ uses I3D [4] to extract visual
features. Uni-Modality represents the methods that only employing visual features while
Multi-Modality represents those visual-audio methods.

The proposed HPCL scheme and the segment-wise cross-entropy loss are complemen-
tary to each other. They can fully exploit the meaningful features for highlight detection. For
the multi-modal predicted scores ỹ, ŷv, ŷa, the weighted sum of training target are :

Lce = L(ỹ,y)+L(ŷv,y)+L(ŷa,y) (5)

where y is the target lables and L(·) denotes the CE loss. Thus, the overall loss function is
formulated as,

Lhld = λ1Lce +λ2LHPCL +λ3Lrank (6)

where λ1,λ2,λ3 denotes the hyper-parameter to balance the terms. We set λ1 = 1,λ2 =
0.3,λ3 = 0.1.

4 Experiments
In this section, we conduct extensive experiments on two challenging benchmarks, i.e.,
YouTube highlights[31] and TVSum[28] to demonstrate the effectiveness of the proposed
method. In our experiments, we use the standard networks 3D CNN [14] with ResNet-34
[15] and I3D[4] which pretrained on the Kinetics-400[5] dataset as our visual backbones.
The audio backbone network uses PANN [21] audio network pretrained on AudioSet [10].
More details on datasets and implementations are available in the supplementary material.

4.1 Comparison with State-of-the-Art
We compare our proposed method with the other state-of-the-art methods [1, 13, 17, 32, 39,
40, 41, 43, 44] on two widely adopted benchmarks, i.e., YouTube Highlights and TVSum.
Specifically, we also present the results using visual feature extractor I3D[4].
Results on YouTube Highlights. The results are listed in Table 1. Our methods achieve
superior performance compared with all of the aforementioned methods with a considerable
margin when we adopt the same visual feature extractor 3DCNN[14] as the works [1, 17].
For instance, our method improves the mAP of skating from 0.620 in Joint-VA to 0.740. The
performance of parkour is boosted from 0.808 to 0.890. It indicates that fully exploiting
intra-modality and inter-modality relations benefit the detection result. The average result
can be further improved by 0.8% when we use the I3D [4] backbone for visual features.
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Category
Uni-Modality Multi-Modality

vsLSTM [44] SM [12] VESD [2] LIM-s [39] KVS [27] DPP [11] SL [40] MN[17] Joint-SA [1] TCG [43] Ours Ours*
VT 0.411 0.415 0.447 0.559 0.353 0.399 0.865 0.806 0.837 0.850 0.894 0.908
VU 0.462 0.467 0.493 0.429 0.441 0.453 0.687 0.683 0.573 0.714 0.714 0.728
GA 0.463 0.469 0.496 0.612 0.402 0.457 0.749 0.782 0.785 0.819 0.844 0.846
MS 0.477 0.478 0.503 0.540 0.417 0.462 0.862 0.818 0.861 0.786 0.795 0.850
PK 0.448 0.445 0.478 0.604 0.382 0.437 0.790 0.781 0.801 0.802 0.779 0.783
PR 0.461 0.458 0.485 0.475 0.403 0.446 0.632 0.658 0.692 0.755 0.743 0.780
FM 0.452 0.451 0.487 0.432 0.397 0.442 0.589 0.578 0.700 0.716 0.704 0.728
BK 0.406 0.407 0.441 0.663 0.342 0.395 0.726 0.750 0.730 0.773 0.761 0.771
BT 0.471 0.473 0.492 0.691 0.419 0.464 0.789 0.802 0.974 0.786 0.891 0.895
DS 0.455 0.453 0.488 0.626 0.394 0.449 0.640 0.655 0.675 0.681 0.703 0.723

Average 0.451 0.452 0.481 0.563 0.395 0.440 0.733 0.731 0.763 0.768 0.783 0.801

Table 2: Comparison of the highlight detection performances with state-of-the-arts on the
TVSum test split in terms of top-5 mAP.

Architecture Variants Average Results
YouTube Highlights TVSum

V Only 0.659 0.763
A Only 0.651 0.752

AV 0.675 0.784
CR-AV 0.697 0.789

CO-AV (ours) 0.747 0.801

Table 3: Ablation Study on the various
modifications of our proposed method.

Learning Scheme Average Results
YouTube Highlights TVSum

Lce (baseline) 0.702 0.766
Lce +LHPCL 0.733 0.792

Lce +LHPCL +Lrank 0.747 0.801

Table 4: Ablation Study on the effect of
dense contrastive learning scheme.

Results on TVSum. We also provide the detailed comparisons with previous works as
shown in Table 2. The results with visual features extracted by [14] can reach 0.762, which
outperforms most methods with the same backbones [1, 17]. A considerable improvement
is achieved by using the backbone I3D [4]. We speculate that the I3D captures high-level
features with larger receptive field, which benefits our feature discrimination using HPCL.
It is noting that the cross-attention method [1] achieves 0.763 and performs lower than our
performance 0.801, indicating the benefits of intra-modality and inter-modality learning and
feature discrimination over the simple cross-attention mechanism.

4.2 Ablation Study

Architectures Variants. To intuitively show the effectiveness of the proposed method,
we present the following various modifications of our proposed methods: 1) A (V) Only:
we only utilize the audio (visual) signals for feature learning in our work and discard the
visual (audio) stream and co-occurrence encoding. 2) AV: the visual and audio features
extracted by feature extrator are simply aggregated by concatenation and then projected into
the intra-modality module for feature modeling. 3) CR-AV: following the implementation of
[1], we employ the cross-attention blocks to our cross-modality module for the audio-visual
signals modeling. 4) CO-AV: Our final architecture with intra-modality and cross-modality
co-occurrence encoding. It is worth noting that all variants introduce the HPCL for model
optimization. The model setting follows our final architectures for all modifications. Table
3 summarizes the results of these architectures variants. The cross-modality representation
modeling can generally improve the performance from 0.675 to 0.697 in YouTube Highlights
as shown in the third and forth rows in Table 3. Furthermore, compared to the CR-AV, our
method with co-occurrence encoding (CO-AV) can boost the performance from 0.697 to
0.747 in YouTube Highlights dataset, showing the superiority and effectiveness of our intra-
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Methods Initial Manner Average Results
Random Mean Youtube Highlight TVSum

Ours w/oG 0.710 0.789
Ours w/G ✓ 0.744 0.803
Ours w/G ✓ 0.747 0.801

Table 5: Ablation Study on the effect of Global Representation. random represents randomly
initialize global embedding while Mean utilizes the mean of input segment-wise embedding.

AV CR-AVCR-AV w/o HPCL Ours

dog

gym

parkour

skating

skiing

surfing

Figure 3: t-SNE plots of feature embedding for the testing split of YouTube Highlights. We
visualize four architecture variants for better comparison. Each segment-level embedding is
viewed as a point and the segment belonging the same category have the same color. Best
view in color.

modality and cross-modality co-occurrence representation encoding.
Effect of HPCL. We validate the design of our HPCL scheme as shown in Table 4. We
formulate that the Baseline discards the contrastive loss and hard-pairs rank loss and only
utilizes segments-wise cross-entropy loss for highlight detection. The results between the
first and second rows suggest that applying contrative loss in supervised setting improve
the performance from 0.702 to 0.733 in YouTube Highlights and 0.766 to 0.792 in TVsum,
which demonstrate the superiority of our HPCL. Also, the hard-pairs sampling is further
boost the performance by 1.4%, validating our analysis that mining hard pairs is helpful for
discriminating power improvement.
Effect of Global Representation. In this experiment, we verify that global representation
play an important role for semantic feature exploiting as shown in Table 5. As we can
see, there is a little difference between the performances of the model with or without global
decoder. The model using random initial global embedding performs slight worse than using
the mean of segment-wise features.
Early Fusion & Late Fusion. Based on our proposed method, we obtain multi-modal fea-
ture embeddings from multiple modalities. We conducted a comparative experiment for early
fusion and late fusion on multi-modal features. Early fusion: Multi-modal features are first
concatenated and then process to the classifier for final prediction. Late fusion: Multi-modal
features are first used to predict highlight scores by specific classifiers, and then fuse the final
scores with the weighted terms. The results are shown in Table 6. Early fusion manner only
performs slight better than the late fusion, verifying the flexibility of our network.

4.3 Visualization
Feature Distribution Visualization. We apply the t-SNE [36] to the aggregated visual
and audio representations on the YouTube Highlights dataset. Figure 3 displays the t-SNE
visualization of our architecture variants as illustrated in Sec. 4.2. We find CR-AV w/ HPCL
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Figure 4: Qualitative results. We show highlight detection results on the test set of YouTube
Highlights. The red box represent the ground truth segments.

Fusion Methods Average Results
YouTube Highlights TVSum

Early fusion 0.741 0.796
Late fusion 0.747 0.801

Table 6: Ablation Study for various fusion method.

performs well compared to the original CR-AV w/o HPCL, showing the strong intra-class
compactness and inter-class dispersion . In addition, when integrating the HPCL and cross-
modality co-occurrence as our final model, the features are better separated.

Qualitative Results. As shown in Figure 4, we display some qualitative results on the
YouTube Highlights dataset. Our proposed method can successfully detect the shining mo-
ments, and the highlight moments and background scenes can be well distinguished.

5 Conclusion

This paper proposes a novel highlight detection methods, which aims to pursue two con-
founding goals: 1) cross-modal relations alignment and learning; 2) inter-segments feature
discrimination. In the former case, we propose a visual-audio network to capture cross-
modal representation by measuring within-modality relations. To enhance the video repre-
sentation, we also introduce a global decoder to abstract global informative features by se-
lectively integrating the segment-level representations. In the later case, a hard-pairs guided
contrastive learning scheme is introduced to shape segment representations by improving
intra-class compactness and inter-class dispersion in a discrminative manner with hard-pairs
sampling strategy. Extensive experiments conducted on two widely adopted benchmarks
demonstrate the effectiveness and superiority of our proposed method compared to previous
methods.
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