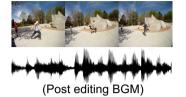


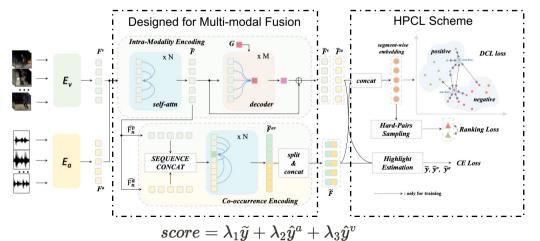
Probing Visual-Audio Representation for Video Highlight Detection via HPCL


Shuaicheng Li, Feng Zhang*, Kunlin Yang, Lingbo Liu, Shinan Liu, Jun Hou, Shuai Yi

Whether the multimodal signal is synchronized?

We perform highlight prediction by judging the synchronization relationship between multimodal signals.

we explore the dependencies between within-modality features and exclude the unrelated clues to facilitate the specialized characteristic of inter-segment alignment.


Difficulty locating highlights accurately due to video frame redundancy

We use the following two schemes,

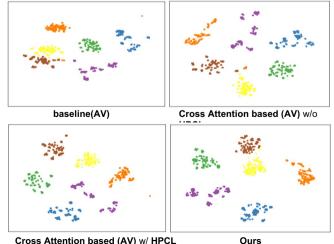
- 1) hard-pairs mining,
- 2) hard-pairs guided contrastive learning scheme to achieve more accurate predictions.

Architecture of our HPCL

Experiments

Highlight detection on YouTube Highlight dataset in terms of mAP.

Category	Uni-Modality					Multi-Modality				
	RRAE [41]	LIM-s [39]	Video2GIF [13]	LSVM [32]	SL[40]	MN[17]	Joint-VA [1]	TCG [43]	Ours	Ours*
dog	0.49	0.579	0.308	0.60	0.708	0.537	0.645	0.553	0.678	0.690
gymnastics	0.35	0.417	0.335	0.41	0.532	0.528	0.719	0.626	0.681	0.660
parkour	0.50	0.670	0.540	0.61	0.772	0.689	0.808	0.709	0.791	0.890
skating	0.25	0.578	0.554	0.62	0.725	0.709	0.620	0.691	0.740	0.741
skiing	0.22	0.486	0.328	0.36	0.661	0.583	0.732	0.601	0.719	0.690
surfing	0.49	0.651	0.541	0.61	0.762	0.638	0.783	0.598	0.822	0.811
Average	0.383	0.564	0.464	0.536	0.693	0.614	0.718	0.630	0.739	0.747


Results are also reported on TVSum dataset

Importance of our feature encoding module and HPCL scheme

Architecture Variants	YouTube Highlight	TVSum	
V Only	0.659	0.763	
A Only	0.651	0.752	
AV	0.675	0.784	
Cross Attention based (AV)	0.697	0.789	
Ours (AV)	0.747	0.801	

Learning Scheme	YouTube Highlight	TVSum	
CE loss (baseline)	0.702	0.766	
CE loss + HPCL	0.733	0.792	
CE loss + HPCL + rank loss	0.747	0.801	

Visual qualitative analysis

Cross Attention based (AV) w/ HPCL