AlISFormer: Amodal Instance Segmentation with Transformer

&66' Minh Tran?, Khoa Vo?l, Kashu Yamazakil Arthur Fernandes?, Michael Kid3, Ngan Lel
IDepartment of CSCE, University of Arkansas 2Cobb-Vantress, Inc  3Poultry Science, University of Arkansas

nlily

“—i-l

Experimental Results

Network Architecture

Table 1: Performance comparison on KINS dataset. { indicates our reproduced results. On
each backbone, the best scores are in bold and the second best scores are in underlines.
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INStances mcludlng occluder, visible, amodal, and invisible. T Erai the backbone. f indicates our reproduced results. In the category of without shape prior, the
£ __ best scores are in bold and the second best scores are in underlines.
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Figure 2: A comparison between Instance Segmentation (I1S) and Amodal
Instance Segmentation (AIS). Given an image with ROl (a), IS aimsto (| - L 0 € RO ~
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N _ Figure 4: Detalls of AISFormer. (a): mask transformer encoder IS
* We empirically validate the usefulness of our proposed designed as one block of self-attention, (b): mask transformer decoder is -.
method by showing that it achieves superior performance to designed as a combination of one block of self-attention and one block of
most of the current state-of-the-art methods benchmarked on cross-attention and (c): invisible embedding is designed as an MLP with 9 ramel]
three amodal datasets, I.e., KINS, COCOA-cls, and D2SA. two hidden layers. '




