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Abstract

In this paper, we present a spatio-temporal tendency reasoning (STR) network for
recovering human body pose and shape from videos. Previous approaches have focused
on how to extend 3D human datasets and temporal-based learning to promote accuracy
and temporal smoothing. Different from them, our STR aims to learn accurate and nat-
ural motion sequences in an unconstrained environment through temporal and spatial
tendency and to fully excavate the spatio-temporal features of existing video data. To
this end, our STR learns the representation of features in the temporal and spatial di-
mensions respectively, to concentrate on a more robust representation of spatio-temporal
features. More specifically, for efficient temporal modeling, we first propose a tempo-
ral tendency reasoning (TTR) module. TTR constructs a time-dimensional hierarchical
residual connection representation within a video sequence to effectively reason temporal
sequences’ tendencies and retain effective dissemination of human information. Mean-
while, for enhancing the spatial representation, we design a spatial tendency enhancing
(STE) module to further learns to excite spatially time-frequency domain sensitive fea-
tures in human motion information representations. Finally, we introduce integration
strategies to integrate and refine the spatio-temporal feature representations. Extensive
experimental findings on large-scale publically available datasets reveal that our STR re-
mains competitive with the state-of-the-art on three datasets. Our code are available at
https://github.com/Changboyang/STR.git.
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Input TCMR STR(ours)

Figure 1: From left to right are the input video sequence, the reconstructed human sequence
of TCMR [2], and the reconstructed human sequence of STR. STR demonstrated more real-
istic and smoother human action in extreme light illumination than the SOTA method TCMR.

1 Introduction and Related Work

The basic goal of 3D human body pose and shape estimation (a.k.a., 3D human motion
estimation) in video aims to estimate 3D human pose and shape from motion videos, which
have a wide range of computer vision applications. Existing methods are mainly based
on parametric models such as SMPL [14] and SCAPE [1] to represent the human body.
Depending on the input, we can roughly divide existing methods into two categories: Image-
based methods [8, 11, 22] and video-based methods [2, 9, 10, 22]. The latter not only
needs to ensure the single-frame image reconstruction effect but also to recover a time-
smoothed human video. So it is more complicated than single-frame image reconstruction.
Kanazawa et al. [9] encode temporal features via 1D convolution. Although this method
obtains smoother human body sequences, the insufficient modeling of spatial features leads
to lower accuracy of estimated human poses. Based on this, Sun et al. [20] propose a skeleton
decoupling-based paradigm to improve spatial accuracy. Although this approach improves
spatial accuracy, it neglects the grasp and reasoning of spatio-temporal feature tendency
and fails to balance temporal smoothness and spatial accuracy. Kocabas et al. [10] train
an adversarial learning network and use AMASS [16] to discriminate between real human
motion and human motion generated by the temporal human body pose and shape regression
network. Later, Choi et al. [2] abandon the strong dependence on the current static frame and
propose a mesh recovery system for PoseForecast that effectively pays attention to temporal
information.

However, such methods for estimating human pose and shape from videos still have
limited performance on some challenging problems. As shown in Figure 1, when captur-
ing motion images in an unconstrained environment (low natural illumination and blurred
human motion), it leads to poor model parameter estimation and thus reconstructs an unrea-
sonable human body. Although some approaches [7, 10, 19] attempt to improve performance
by adding external data resources, these methods do not take full advantage of the potential
information in the underlying data. Meanwhile, some methods [2, 15] are inherently limited
to modeling video temporal relationships. While these methods improve the temporal con-
sistency of human pose estimation in video, they lack spatial understanding and reasoning
capabilities, leading to biased predictions. In general, during human movement, the current
motion depends on the state of the previous motion and influences the subsequent motion se-
quences. However, when there are problems with extreme illumination or motion blur in the
video, the current motion does not effectively obtain the state of the previous motion and can
negatively affect future motion. Since human motion has a similar development tendency, we
call the above problem tendency reasoning. We find that temporal tendency reasoning helps
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to explore long dependencies between frames and to obtain information from frames with
a larger temporal range. The enhancement of spatial tendency helps the network to focus
more on human-related features in unconstrained scenes and mitigate background effects,
thus estimating the pose accurately for each frame.

Based on the above observations and problems, we offer a spatio-temporal tendency rea-
soning (STR) approach for estimating human body pose and shape from videos. Our STR
reason temporal and spatial tendencies separately and use integration strategies to aggregate
them with each other. In particular, in the temporal tendency reasoning (TTR) module, in
order to preserve the efficient dissemination of temporal tendency in motion sequences, we
partition spatial features and the corresponding recurrent layers into hierarchical subsets, in
which the network reasons the temporal tendency in each subset in an incremental manner.
Subsets of different layers are then concatenated together by a residual structure to reason
the tendency of the whole motion sequence. For the modeling of spatial tendency, we em-
ploy the means of spatial tendency enhancement to learn human movement. Existing work
utilizes VAE [15, 23] and optical flow methods [24] to learn human action representations.
Unlike them, our spatial tendency enhancing (STE) module models the human motion rep-
resentation by calculating the difference in motion between adjacent frames. In STE, we
perform time-domain spatial enhancement and frequency-domain spatial enhancement sep-
arately. Both employ motion representations to adaptively generate weights. These weights
can be used to excite spatial-sensitive features in the time domain and high-frequency motion
features in the frequency domain, allowing the network to uniformly learn human body spa-
tial features and motion features. Furthermore, we introduce integration strategies to refine
and integrate human features through self-integration strategy and cross-integration strategy.

Our main contributions to this work are outlined below:

• We propose a spatio-temporal tendency reasoning for human body pose and shape
estimation from videos, which can alleviate the problem of human reconstruction in
unconstrained scenes.

• We design a temporal tendency reasoning module and a spatial tendency enhancement
module, respectively, to facilitate the effective propagation of motion information over
long-distance frames and to stimulate spatially sensitive features. We also propose
integration strategies module to enhance the integrated representation of different fea-
tures.

• Experimentally, both the quantitative and qualitative results of our method show the
effectiveness of the proposed method on widely evaluated benchmark datasets.

2 Approach
Figure 2 shows the overall pipeline of our STR. Given an input video V = {It}T

t=1 of length T ,
we utilize the ResNet-50 [5] to extract feature vectors F = { fi}T

i=1 ∈RT×2048 of each frame.
Next, F passes through the TTR and STE modules to reason the temporal tendency and
enhance the spatial tendency respectively and fuses the results of the two modules through
the integration network to output the enhanced tendency features. Meanwhile, F is fed
into self-integration and cross-integration to output two enhanced spatio-temporal features.
Ultimately, the outputs of these modules are fused through an integration network and the
results are used to regress the SMPL parameters.
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Figure 2: An overview of our framework. Given a video sequence, the aim of our method
is to reconstruct the corresponding human sequence. Our method consists of two modules,
a tendency reasoning enhancing module and an integration strategy module. The tendency
reasoning enhancing module consists of a temporal tendency reasoning and a spatial ten-
dency enhancing module. The integration strategies consist of a self-integration strategy and
a cross-integration strategy.

2.1 SMPL Model
We employ the SMPL statistical model to characterize humans. SMPL defines a function
M(θ ,β ), which takes a set of pose parameters θ ∈ R3×J of the J skeletal joints and shape
parameters β ∈R10 as input, and outputs a full-body triangulated mesh M ∈RN×3 with N =
6890 vertices. The model transforms the mesh vertices to the body joints J by a mapping,
here J =W ·M, where W is a pre-trained linear regressor.

2.2 Temporal Tendency Reasoning
As shown in Figure 3, we split F evenly into 4 sub-fragments in the temporal dimension
to construct 4 sub-branches, where each fragment is shaped as B× T

4 ×C. More specifi-
cally, the F1 sub-fragment does not undergo any operation, our TTR takes the other three
sub-fragments from F2 to F4 as the inputs to three identical GRU [4] to learn temporal repre-
sentation. To further reason temporal tendency, then for the four branches, our TTR adopts a
hierarchical cascade architecture to successively fuse the results of the two adjacent branches
and transmits progressively them to the next branch to generate new F2, F3 and F4. We for-
mulate this process as follows,

Fo
i = Fi, i = 1,

Fo
i = GRU(Fo

i )+Fo
i−1, i = 2,3,4 (1)

where Fo
i ∈RB× T

4 ×C is the output of i-th sub-fragment. For F1, we do not temporally encode
it to maximize the preservation of spatial features. And for F2, we hope to supplement the
current features from the relevant spatial features in F1. Under extreme lighting conditions,
fragments interact in this form to facilitate the efficient propagation of invisible informa-
tion over long-distance frames. In TTR, different sub-fragments focus on different temporal
tendencies in a video. TTR can aggregate temporal tendency across multiple fragments to
reason temporal tendency across whole motion sequences. This not only explores long-term
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Figure 3: Illustration of the temporal tendency reasoning module (left) and spatial tendency
enhancing (right). TTR module inputs feature F and outputs the reasoned spatio-temporal
feature Fo

ttr. STE module inputs feature F and then passes through time-domain spatial en-
hancement (a) and frequency-domain spatial enhancement (b) respectively, finally outputting
two different enhanced spatio-temporal features ST EFo

1 , ST EFo
2 .

dependencies between fragments but also captures information from long-distance frames.
Eventually, each sub-branch is concatenated and then added to the original feature F to inte-
grate the spatio-temporal feature representation.

Fo
ttr = F + concat(Fo

1 ,F
o
2 ,F

o
3 ,F

o
4 ), (2)

Where Fo
ttr ∈RT×B×C is the output of the TTR module. In this way, the temporal modeling of

the entire video sequence is transformed into temporal tendency reasoning, i.e., the temporal
tendency of different sub-branches are combined hierarchically to form a complete temporal
tendency. This temporal tendency reasoning is more conducive to the network’s learning of
long time sequences.

2.3 Spatial Tendency Enhancing

When encountering extreme illumination, the network cannot express human-related fea-
tures well. Motion information is an important clue for understanding human behavior in
videos. Spatial tendency enhancing(STE) aims to enhance human representation and distin-
guish human-related features by focusing on motion. We observe that the pixel values of
human motion regions change over time larger than background regions. So STE exploits
the temporal differences of adjacent frame-level features to focus on motion features while
suppressing irrelevant information in the background. We elaborated on two parts of STE,
which are time-domain spatial enhancement and frequency-domain spatial enhancement. As
shown on the right of Figure 3(a), in time-domain spatial enhancement, we first use 1D
convolution on feature F of shape B×T ×C to learn its time-domain spatial representation
SF .

Then our STE iteratively calculates the difference between the features of two adjacent
frames to construct a difference sequence D f . For SF , our STE models the spatial differ-
ence sequence DF in the same way. Finally, the two difference sequences are subtracted to
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calculate the time-domain spatial representation offset M1.

M1(t) = DF(t)−D f (t), 0 < t < T
DF(t) = SF(t +1)−SF(t),D f (t) = F(t +1)−F(t) 0 < t < T (3)

where t represents a frame in a sequence of T frames. Then we leverage the global average
pooling layer to aggregate temporal information and employ a sigmoid layer to learn the
spatial offset weight map A1. While learning the offset weight map, we also send the original
features to the GRU [4] layer to learn temporal representation and obtain spatio-temporal
features FG. FG is multiplied by the spatial motion weight map A1 to obtain time-domain
spatio-temporal features ST EFo

1 .

ST EFo
1 (t) = FG(t)∗A1,

A1 = sigmoid(AV P(M1)),FG = GRU(F)
(4)

∗ denotes the channel-wise multiplication.
The Fourier transform is sensitive to high-frequency features of human motion. For

Figure 3(b), in frequency-domain spatial enhancement, we first perform the Fast Fourier
Transform on F to obtain the frequency domain feature representation and then use the in-
verse Fast Fourier Transform to convert the frequency domain feature back to the temporal
domain feature Ff f t . We consider that the FFT-IFFT operation can preserve human infor-
mation and highlight the high-frequency motion features to compensate for the lack of time-
domain representation. Next, we send F and Ff f t to the GRU [4]. The Fourier transform
is sensitive to overall spatial motion, the GRU(F) and F are overall subtracted to obtain the
spatio-temporal offset map M2 to model the information of the spatio-temporal difference.
Finally, we apply formulas 4, M2,Ff f t as input, and output spatio-temporal feature ST EFo

2
with enhanced spatial tendency.

ST EFo
2 (t) = GRU(Ff f t(t))∗A2,

A2 = sigmoid(AV P(M2)),
M2(t) = GRU(F(t))−F(t), 1 ≤ t ≤ T

(5)

STE enhances spatial human motion tendency by focusing on continuous frame differ-
ences and overall sequence differences. STE fully considers the properties of the time and
frequency domain to model the actual motion features. Meanwhile different from using mo-
tion estimation network to learn human motion, STE uniformly learns motion features and
spatio-temporal features, which can effectively enhance spatial tendency.

2.4 Integration Strategies
Integration strategies are classified into self-integration and cross-integration strategies ac-
cording to the type of input. The aim is to aggregate the outputs of each component via an
integration network. The integrated network is shown in Figure 2. First, the network accepts
a set of spatio-temporal features as input, then these features are cascaded and passed through
multiple RELU activation functions and FC layers, followed by a Softmax activation func-
tion to produce a set of weights. This set of weights is then multiplied by the corresponding
features and summed to produce the integration features.

We first integrate the output of TTR, and STE to obtain the spatio-temporal tendency
reasoning feature FST R.

FST R = Integration(Fo
ttr,ST EFo

1 ,ST EFo
2 ) (6)
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The implementation procedure of the integration strategies module is described in Algorithm
1. The integration strategy first divides the input features according to the temporal dimen-

Algorithm 1 Integration strategies
Input: All frame features F , number of integration selectable N.
Output: Enhancing features F̂

1: /* Splitting F into c parts */
2: Get Fc1 ,Fc2 = GRU(SPLIT(F))
3: <PHASE 1: SELF-INTEGRATION PHASE>
4: for i < N do
5: Get Fc1

i = Integration(Fc1 )
6: Get Fc2

i = Integration(Fc2 )
7: end for
8: <PHASE 2: CROSS-INTEGRATION PHASE>
9: Get F̂SF = Integration(Fc1

i ,Fc2
i )

10: Get F̂CF = Integration(Fc1 ,Fc2 )
11: return F̂SF , F̂CF

sion to focus on the temporal context. The divided features are then temporally encoded
and passed through the self-integration phase, the self-integration process can enhance the
expression of the original human features. Finally, the enhanced human features Fc1

i and Fc2
i

and the original features Fc1 ,Fc2 are fed into the cross-integration phase that has focused on
human information at different times. The integration strategies module outputs F̂SF , F̂CF .
We finally integrate the F̂SF ,FST R and F̂CF to obtain the final spatio-temporal features Z.
Meanwhile, we feed Z into the SMPL regressor to regress the SMPL parameters.

Z = Integration(F̂SF ,FST R, F̂CF) (7)

2.5 Loss Function
L2 loss was applied to 2D and 3D joint coordinates and SMPL parameters during training.

LG = ω3d

T

∑
t=1

∥Xt − X̂t∥2 +ω2d

T

∑
t=1

∥xt − x̂t∥2 +ωshape∥β − β̂∥2 +ωpose

T

∑
t=1

∥θt − θ̂t∥2

where Xt stands for 3d joints, xt for 2d joints, θ and β represent the SMPL parameters. ω(·)
denotes the corresponding loss weights.

3 Experiments

3.1 Implementation Details
Following the [2] parameters, we initialize the backbone and regressor with the pre-trained
SPIN by setting the length of the input sequence T to 16. With a mini-batch size of 32, the
weights are modified via the Adam optimizer. In order to save training time and memory,
we pre-computed the spatial features from the images through ResNet. The initial learning
rate is set at 5× 10−5 and is reduced by a factor of 10 if the accuracy of the 3D pose does
not improve after 5 epochs. With a Quadro RTX 6000 GPU, we trained the network for 30
epochs. PyTorch was used to implement the code.
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3.2 Evaluation Datasets and Metrics
Evaluation Datasets. The 3DPW[21] is a 3D dataset capturing the SMPL human body in
a natural scene. The MPI-INF-3DHP[17] consists of over 1.3 million frames of video of 11
people captured by 14 cameras simultaneously. Human3.6M[6] is a massive dataset of 3.6
million RGB images of 15 daily activities performed by 11 different professional actors.

Evaluation Metrics. We calculated the mean error per joint position (MPJPE) and
Procrustes-aligned MPJPE (PA-MPJPE) as the main metrics of accuracy. And we mea-
sured the Euclidean distance (MPVPE) between the ground truth vertex and the predicted
vertex. We calculated the mean of the difference between the predicted 3D coordinates and
the ground truth acceleration (Accel) for the temporal evaluation.

3.3 Comparison Result and Ablation Study
Quantitative Comparison. As shown in Table 1, we first compared our proposed approach
with the state-of-the-art video-based and image-based approaches on three datasets. We
compare the results with or without the 3DPW dataset (in-the-wild) during training sepa-
rately. When 3DPW was involved in the training, our method performs admirably on all
three test datasets, with the performance on the challenging dataset (3DPW [21] and MPI-
INF-3DHP [17]) being particularly impressive. From the quantitative results, we can see
that our method provides spatially more accurate 3D human sequence results. In terms of
temporal consistency, our approach maintains almost the same acceleration error as TCMR
[2], with only a 0.1% increase. Our approach improves spatial accuracy while maintaining a
similar temporal acceleration error. Our approach focuses on unconstrained scene (extreme
lighting, etc.) problems. We also validate on the Human3.6m dataset (indoor), and quanti-
tative results show that under constrained scenarios, our method still outperforms previous
methods in spatial accuracy and temporal consistency.

Method
3DPW MPI-INF-3DHP Human3.6M

MPJPE↓ PA-MPJPE↓ MPVPE↓ Accel↓ MPJPE↓ PA-MPJPE↓ Accel↓ MPJPE↓ PA-MPJPE↓ Accel↓

si
ng

le
im

ag
e

HMR [8] 130.0 76.7 - 37.4 124.2 89.8 - 88.0 56.8 -

GraphCMR [12] - 70.2 - - - - - - 50.1 -

SPIN [11] 96.9 59.2 116.4 29.8 105.2 67.5 - - 41.1 18.3

I2L-MeshNet [18] 93.2 57.7 110.1 30.9 - - - 55.7 41.1 13.4

PyMAF [3] 92.8 58.9 110.1 - - - - 57.7 40.5 -

vi
de

o

HMMR [9] 116.5 72.6 139.3 15.2 - - - - 56.9 -

Sun et al. [20] - 69.5 - - - - - 59.1 42.4 -

VIBE (w/o 3DPW)[10] 93.5 56.5 113.4 27.1 97.7 63.4 29.0 65.9 41.5 18.3

TCMR (w/ 3DPW) [2] 86.5 52.7 103.2 6.8 97.6 63.5 8.5 73.6 52.0 3.9

TCMR (w/o 3DPW) [2] 95.0 55.8 111.3 . 6.7 96.5 62.8 9.5 62.3 41.1 5.3

Lee et al. (w/o 3DPW) [13] 92.8 52.2 106.1 6.8 93.5 59.4 9.4 58.4 38.4 6.1

Ours (w/ 3DPW) 85.2 52.4 101.2 6.9 96.3 63.1 8.6 73.3 51.9 3.6

Ours(w/o 3DPW) 91.5 55.2 108.7 6.7 95.3 61.6 8.4 67.8 46.6 3.6

Table 1: Comparisons of our approach with state-of-the-art methods on 3DPW(in-the-wild),
MPI-INF-3DHP(outdoor), Human3.6M(indoor) testing set. We denote whether 3DPW is
involved in the training process as w/ 3DPW, w/o 3DPW respectively.

To verify the effectiveness of our method for unconstrained scenes, our approach is also
compared to previous 3D pose and shape estimation algorithms that have not been trained
by 3DPW [21]. In the in-the-wild dataset 3DPW, our method outperforms TCMR by about
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Figure 4: Qualitative visualization of STR. The top row shows the original image samples,
the middle row shows the TCMR [2] results, and the bottom row shows our results.

3.5% and 3.4% on MPJPE and MPVPE, respectively. It also continues to perform well
on MPI-INF-3DHP. When our method is trained without 3DPW, the spatial accuracy and
temporal smoothness are still optimal, and the relative improvement is more for ours(w/
3DPW training). Our method ensures the plausibility of the human pose by reasoning about
the spatio-temporal tendency of human motion. When no wilderness dataset is involved
in the training and the constraints become less, our method can still reason and enhance
the spatio-temporal tendency in the unconstrained environments and has more robustness
to outdoor scenes. Notably, Lee et al.’s method [13] generally outperforms our method in
accuracy, but weaker than our method in temporal consistency. But since the method of Lee
et al. [13] has no published code, we cannot make a qualitative comparison. Furthermore,
the reduction of acceleration errors demonstrates the effectiveness of the proposed spatio-
temporal tendency reasoning module. In particular, our method can recover smoother human
action sequences compared to single image-based methods, i.e., the temporal consistency is
greatly improved. In the indoor dataset, compared with the TCMR(w/o 3DPW) [2], the
reason why the MPJPE and PA-MPJPE of Human3.6M [6] in Table 1 is not good in that we
have not obtained the SMPL annotations of Human3.6M [6].

Qualitative comparison. In qualitative experiments, as shown in Figures 1 and 4, our
method pays attention to spatial accuracy as well as temporal consistency. TCMR [2] is
unable to reason spatial information from more distant frames in the extremely weaker illu-
mination scenes. In addition, because TCMR [2] focuses too much on temporal smoothing
enhancement, the human pose variation between frames is relatively small, which also leads
to the bias of prediction. In contrast, our method predicts reasonable human action sequences
by reasoning the human body information in the current weak illumination from the more
distant visible frames. Moreover, our method has a better prediction ability for human move-
ments, especially for limb movements (e.g., walking, arm-waving, etc.).

Discussion. Figure 5(a) shows our reconstructed out-of-dataset video sequence. Our
method can predict human actions with a continuous tendency in consecutive frames and
has promising generalization capabilities. The transitional properties of the actions show
that our method captures the past spatio-temporal tendency and predicts the future spatio-
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temporal tendency. As shown in Figure 5(b), compared to TCMR [2], our acceleration error
curves are generally flat and have similar trends. As the time step increases, our acceleration
error approaches the GT acceleration error. At most time steps, our acceleration error is even
lower than the GT acceleration error, which indicates that our method reasons for the correct
spatio-temporal tendency of human motion which validates the effectiveness of our method.

time

GT acceleration Ours acceleration

GT acceleration TCMR acceleration

TCMR

OURS

(a) (b)

Figure 5: Subfigure (a) is our reconstructed video sequence from the web. Subfigure (b) is
the comparison among TCMR, Ours, and GT acceleration errors.

Ablation Study. Table 2 shows that the acceleration error rises by 0.3 and the accuracy
decreases by 0.1 after removing the TTR module. When we remove the STE module and the
time-frequency domain enhancement module in STE, respectively, the PA-MPJPE increases.
This indicates that the model cannot perceive the time-domain sensitive or frequency-domain
high-frequency human spatial motion tendency, resulting in a decrease in accuracy. We
removed the self- and cross-integration strategy from the integration strategies module and
the PA-MPJPE and acceleration errors rise. This shows that the inter-frame features need to
complement each other to refine the current spatio-temporal features to recover reasonable
human poses.

Model PA-MPJPE↓ Accel↓
STR w/o TTR 61.9 8.7

STR w/o STE 62.1 8.4
STR w/o STE (time-domin) 61.9 8.4

STR w/o STE (frequency-domin) 61.7 8.5

STR w/o Integration strategies(self-) 62.3 9.1

STR w/o Integration strategies(cross-) 62.7 9.0

STR 61.6 8.4

Table 2: Effects of the network designs on the performance on the MPI-INF-3DHP dataset.

4 Conclusion

We offer a spatio-temporal tendency reasoning method for human pose and shape estima-
tion from videos. STR fully exploits human feature representations in video sequences and
enhances spatio-temporal feature representations by reasoning about temporal information
representations and exciting sensitive spatial features in human motion sequences. Spatio-
temporal features are also refined through integration strategies. We demonstrate that our
method provides smooth and accurate human motion through extensive testing.
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