Spatio-temporal Tendency Reasoning for Human Body Pose and Shape Estimation from Videos

Boyang Zhang, Suping Wu*, Hu Cao, Kehua Ma, Pan Li, Lei Lin

Abstract

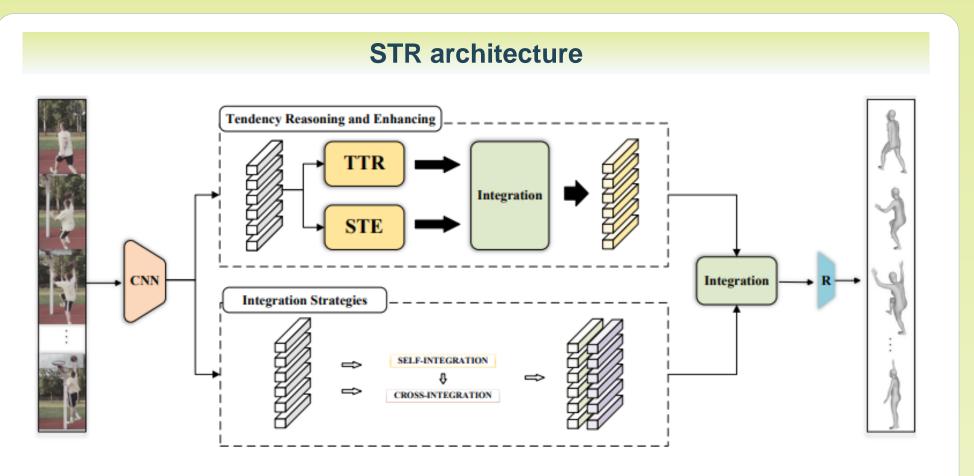
- > The existing human pose and shape estimation from videos methods are difficult to reconstruct a reasonable human body in an unconstrained environment (extreme illumination, motion blur). Although some approaches attempt to improve performance by adding external data resources, these methods do not take full advantage of th e potential information in the underlying data.
- > While these methods improve the temporal con sistency of human pose estimation in video, the y lack spatial understanding and reasoning cap abilities, leading to biased predictions.

Objective

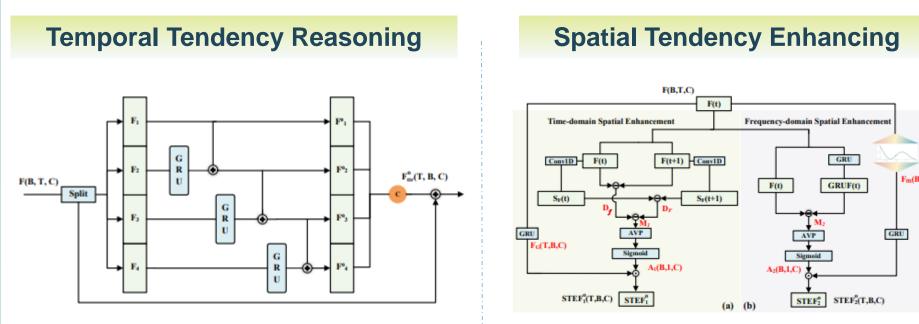
Our approach aims to alleviate the problem of hu man reconstruction in unconstrained scenes by re asoning about the spatio-temporal tendency of mo ving human body.

Main Contribution

- > We propose a spatio-temporal tendency reason ing (STR) for human body pose and shape esti mation from videos, which can alleviate the pro blem of human reconstruction in unconstrained scenes.
- > We design a temporal tendency reasoning mod ule and a spatial tendency enhancement modul e, respectively, to facilitate the effective propag ation of motion information over long-distance f rames and to stimulate spatially sensitive featur es. We also propose integration strategies mod ule to enhance the integrated representation of different features.



STR consists of two modules, tendency reasoning enhancing module and an integration strategy module. The tendency reasoning enhancing module consists of a temporal tendency reasoning and a spatial tendency enhancing module. The integration strategies consist of a self-integration strategy and a cross-integration strategy.



TTR can aggregate temporal ten dency across multiple fragments to reason temporal tendency acr oss whole motion sequences. Th is not only explores long-term de pendencies between fragments but also captures information fro m long-distance frame.

* represents corresponding author

School of Information Engineering, Ningxia University, Yinchuan, China

STE exploits the temporal differe nces of adjacent frame-level feat ures to focus on motion features while suppressing irrelevant infor mation in the background. We el aborated on two parts of STE, w hich are time-domain spatial enh ancement and frequency-domain spatial enhancement.

Integration Strategies

Algorithm 1 Integration strategies **Input:** All frame features *F*, number of integration selectable *N*. **Output:** Enhancing features \vec{F} 1: /* Splitting F into c parts */ 2: Get $F^{c_1}, F^{c_2} = \text{GRU}(\text{SPLIT}(F))$ 3: <PHASE 1: SELF-INTEGRATION PHASE> 4: **for** i < N **do** Get $F_i^{c_1} = \text{Integration}(F^{c_1})$ Get $F_i^{c_2}$ = Integration(F^{c_2}) 7: end for 8: <PHASE 2: CROSS-INTEGRATION PHASE> 9: Get \hat{F}_{SF} = Integration $(F_i^{c_1}, F_i^{c_2})$ 10: Get \hat{F}_{CF} = Integration(F^{c_1}, F^{c_2}) 11: return \hat{F}_{SF} , \hat{F}_{CF}

Table 1. Comparisons of our approach with state-of-the-art methods on 3DPW(in-the-wild), MPI-INF-3DHP(outdoor), Human3.6M(indoor) testing set. We denote whether 3DPW is involved in the training process as w/ 3DPW, w/o 3DPW respectively.

	Method	3DPW				MPI-INF-3DHP			Human3.6M		
single image		MPJPE↓	PA-MPJPE↓	MPVPE↓	Accel↓	MPJPE↓	PA-MPJPE↓	Accel↓	MPJPE↓	PA-MPJPE↓	Accel↓
	HMR [8]	130.0	76.7	-	37.4	124.2	89.8	-	88.0	56.8	-
	GraphCMR [-	70.2	-	-	-	-	-	-	50.1	-
	SPIN [96.9	59.2	116.4	29.8	105.2	67.5	-	-	41.1	18.3
	I2L-MeshNet [2]	93.2	57.7	110.1	30.9	-	-	-	55.7	41.1	13.4
	PyMAF 🔲	92.8	58.9	110.1	-	-	-	-	57.7	40.5	-
video	HMMR [116.5	72.6	139.3	15.2	-	-	-	-	56.9	-
	Sun et al. [22]	-	69.5	-	-	-	-	-	59.1	42.4	-
	VIBE (w/o 3DPW)[93.5	56.5	113.4	27.1	97.7	63.4	29.0	65.9	41.5	18.3
	TCMR (w/ 3DPW) [1]	86.5	52.7	103.2	6.8	97.6	63.5	8.5	73.6	52.0	3.9
	TCMR (w/o 3DPW) [1]	95.0	55.8	111.3 .	6.7	96.5	62.8	9.5	62.3	41.1	5.3
	Lee et al. (<i>w/o 3DPW</i>) [92.8	52,2	106.1	6.8	93.5	59.4	9.4	58.4	38.4	6.1
	Ours (w/ 3DPW)	85.2	52.4	101.2	6.9	96.3	63.1	8.6	73.3	51.9	3.6
	Ours(w/o 3DPW)	91.5	55.2	108.7	6.7	95.3	61.6	8.4	67.8	46.6	3.6

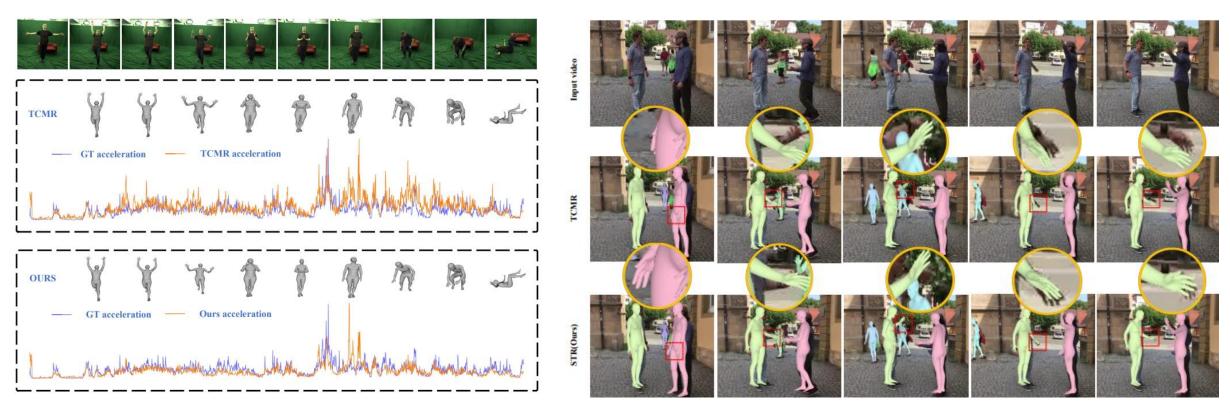


Figure 2. The acceleration errors comparison and Qualitative visualization of STR in the unconstrained scene.

Loss Function

L2 loss was applied to 2D and 3D joint coordinates and SMPL parameters duri ng training.

$$L_{\mathcal{G}} = \omega_{3d} \sum_{t=1}^{T} \|X_t - \hat{X}_t\|_2 + \omega_{2d} \sum_{t=1}^{T} \|x_t - \hat{x}_t\|_2 + \omega_{shape} \|\beta - \hat{\beta}\|_2 + \omega_{pose} \sum_{t=1}^{T} \|\theta_t - \hat{\theta}_t\|_2$$

where X_t stands for 3d joints, x_t for 2d j oints, θ and β represent the SMPL para meters. $\omega(\cdot)$ denotes the corresponding loss weights.

Experimental Results

Table 2. Effects of the network designs on the performance on the MPI-INF-3DHP dataset.

Model	<i>PA-MPJPE</i> ↓	Accel↓	
STR w/o TTR	61.9	8.7	
STR w/o STE	62.1	8.4	
STR w/o STE (time-domin)	61.9	8.4	
STR w/o STE (frequency-domin)	61.7	8.5	
STR w/o Integration strategies(self-)	62.3	9.1	
STR w/o Integration strategies(cross-)	62.7	9.0	
STR	61.6	8.4	

Figure 1. Qualitative Comparison under extreme illumination.

