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Abstract

The occlusion caused by a facemask emerged as a new challenge in face recogni-
tion as the pandemic of COVID-19 made wearing a facemask an everyday practice. The
recognition performance of the previous approaches degraded in recognising a face with
a facemask since the models were trained to extract features from the overall face and not
many face samples with a facemask were available. Although the previously proposed
method of using both face data without facemasks and those with synthesised facemasks
for training improved the recognition performance, a certain drop in the recognition per-
formance for faces without facemasks was observed. Thus, we propose an approach that
can achieve robust recognition of faces with facemasks without compromising that of
faces without facemasks. This study broke free from using a single prototype and de-
signed Pairwise Prototype Learning (PPL) which separated the prototype depending on
the facemask condition of the face data. Models trained with the proposed PPL method
outperformed those trained with previously suggested methods in recognising both faces
with and without facemasks. On top of presenting a new MFW+ dataset for masked face
recognition benchmark, our study found a simple and intuitive way to improve recog-
nition performance on all benchmarks, overcoming the limitation of using a single pro-
totype in face recognition for faces with facemasks. All codes of PPL are available at
https://github.com/kim1102/PPL-MFR.

1 Introduction

With the construction of large-scale face data and the advancement of convolutional neu-
ral networks (CNN), the performance of face recognition has been dramatically improved.
However, in the outbreak of the unprecedented pandemic of COVID-19, a new challenge
of recognising masked faces arose. On top of the majority of face recognition data being
based on faces not wearing facemasks, the occlusion by a facemask made it hard to recog-
nise faces with facemasks, and it brought limitations to using the existing face recognisers
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Figure 1: The contribution of each patch to the final feature extraction. Value of each
patch were calculated by averaging the cosine similarities between the original images and
modified ones in which the pixel value of each patch was filled with 0. The images used for
the calculation were about 2,000 frontal face images sliced into the size of 8x8. (a) A model
trained without synthesised data, (b) A model trained with synthesised data, and (c) A model
trained with the suggested PPL.

without causing accuracy degradation [12]. Models trained with datasets whose samples are
mostly unmasked faces extract features from the overall face. Thus, the extracted features
from the lower part of faces when a face is wearing a facemask can serve as a component to
degrade the accuracy, being useless for calculating feature distance as shown in Fig. 1 (a).

Several breakthroughs were suggested for masked face recognition, such as restoring
masked region[5], [11], [13] or making models ignore the masked region [30], [22]. Among
the many strategies, data augmentation utilising virtual masked faces has enabled the model
to achieve significant performance improvements in masked face recognition [15]. How-
ever, these methods have a limitation compromising the recognition performance under an
unmasked face environment, despite the enhancement in terms of accuracy for masked face
recognition [10]. The reason behind this problem is that masked faces and unmasked faces
both contribute to generating only one representative feature, which is known as a prototype,
in a linear layer. Although the information delivered by a face with a face mask differs from
that delivered by faces without a face mask, the training phase based on a single prototype
requires one prototype that covers samples under both conditions. It leads to ignoring the
lower part of a face and extracting the features in the upper face intensively, such as an eye
area, due to the characteristic of the deep learning model that extracts and trains common
features within each class. Therefore, the models trained with synthesised masked face data
extract features, ignoring the information from the lower face, as shown in Fig. 1 (b). And
this caused degradation in unmasked face recognition performance due to the absence of
information from the lower face.

To resolve these problems and overcome the limitations, we propose Pairwise Proto-
type Learning (PPL) which could embed the features in consideration of both unmasked and
masked face images without any information loss by using two prototypes in the training
procedure shown as Fig. 1 (c). The proposed method trains each prototype by classifying
the samples in the same class according to mask conditions in order to break free from the
constraint of the single prototype approach. Using two prototypes that correspond to both
face conditions makes it possible for the model to compare the feature embeddings and pro-
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Datasets # of subjects | # of images (videos) | Mask Usage
CFP-FP [28] 500 7,000 - Test
AgeDB-30 [25] 568 16,488 - Test
IJB-B [35] 1,845 11,754 (7,011) - Test
IJB-C [24] 3,531 31,334 (11,779) - Test
LFW [16] 5,749 13,233 - Test
CALFW [37] 5,749 12,174 - Test
CPLFW [36] 5,749 11,652 - Test
VGGFace?2 [4] 9,131 3.31M - Train/Test
CASIA [34] 10K 494K - Train
MS-Celeb-1M V3 [8] 93K 5.1M - Train
MegaFace [19] 690K 4. 7™M - Train/Test
WebFace260M [38] 4M 260M - Train
MFR2 [2] 53 269 Yes Test
MFW [15] 300 3,000 Yes Test
RMFRD [33] 525 14,000 Yes Test

Table 1: Datasets widely in use for face recognition. Datasets currently available for face
recognition are mostly based on faces without a facemask.

totypes under the same mask condition in the training stage and release the strict similarity
constraint between masked and unmasked faces. The contribution of this study can be sum-
marised as follows:

1) We propose PPL (Pairwise Prototype Learning) as an approach that overcomes the lim-
itation of using a single prototype in masked face recognition and is easy to apply to the
previously proposed softmax-based methods.

2) We demonstrate that the models trained with PPL achieve better performance in recognis-
ing both masked and unmasked faces compared to the models trained without PPL.

3) We present a new dataset of MFW+ which is an extension of MFW [15], the published
benchmark dataset for measuring the performance of face recognition for masked faces.

2 Related Work

Many proposed methods suggested for face recognition can be classified into two types:
softmax-based and non-softmax-based. The method proposed by [6] is one of the non-
softmax-based methods that utilise siamese networks and contrastive loss for learning simi-
larity metrics. Another non-softmax-based approach, Triplet loss [27] directly reduces fea-
ture distances extracted from the same person while keeping the distance of feature extracted
from different person far. However, these methods have a problem in that pair selection is
time-consuming, and the pair configuration greatly affects the recognition performance [23].
The softmax based methods [31], [34], [17], [20], [23], [32], on the other hand, is free from
pair construction because they compare the similarity between the feature embeddings ex-
tracted from the input images and prototypes which represent the identities that are included
in dataset. For this reason, softmax and its variants have become the general methods for
face recognition.

High-performance face recognition requires not only well-designed loss functions but
also large training face datasets under various environmental conditions. For this reason,
datasets involving large-scale facial data under various environments were collected and
published by several research groups [14], [1], [38]. However, the collected datasets were
mostly based on faces not wearing facemasks and which made models hard to recognise
masked faces. Inspiringly, datasets such as RMFRD [33], MFW [15], and MFR2 [2] were
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collected for masked faces but the subject number of all these three datasets barely reach
a thousand which means not suitable for training. Table. 1 shows the lack of masked face
datasets compared to the other face datasets. To overcome the challenges related to the
small number of masked face samples, synthesising a virtual mask on an unmasked face
image was proposed [2], [15]. By including samples with face masks, models can extract
features excluding the areas where occlusion occurs [29]. For this reason, mask synthesis
enabled models to achieve better performance in masked face recognition compared to a
model trained without synthesised data.

Even though models trained with masked face data yielded remarkable performance
gains in masked face recognition, they incurred performance degradation on unmasked faces
[10]. This result is related to the characteristic of softmax-based learning using a single pro-
totype: many suggested softmax and its variant methods including [7] used in report [10]
gather feature embeddings towards a single prototype at the training stage. These features
had a negative impact on the recognition performance when applied to the mask synthesis
method. A single prototype generated from both unmasked and masked face samples makes
models extract most of the features from the upper face and leads models to discard the rich
identity information contained in the lower face. On the other hand, there was an attempt of
using multiple prototypes [9] in a competition for masked face recognition [3]. However, the
approach that is proposed in [9] for label-noised data removal does not guarantee the con-
sistency of feature embedding and prototype comparisons depending on mask conditions.
With this intuition, we propose a separate prototype containing representative features with
different mask conditions for masked face recognition.

3 Proposed method

Compared to the conventional approaches using softmax-variant loss, the proposed PPL has
two major features; 1) composed of separate linear layers and forwards the feature embed-
dings to different linear layers depending on the face mask conditions, and 2) embedding
similarity loss is employed to maintain the similarity between unmasked and masked face
feature embeddings.

3.1 Logits of PPL

To use softmax-variant loss for learning, the model consists of a backbone network that
extracts feature embeddings and a linear layer that allows the embeddings to be projected to
an appropriate place to have proper discrimination. The posterior probability of the model
having a backbone network f and a linear layer W can be described as follows:

p(x) =W(f(x)) (1)

The key idea of PPL is not to use a single prototype but forwards feature embeddings to sepa-
rate prototypes depending on the facemask conditions. To store two different prototypes, we
designed two linear layers of the same size. In training the model using PPL, the backbone
network forward is performed on all input images and they are forwarded to two different
linear layers depending on the facemask conditions. The posterior probability p’(x) inferred
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Figure 2: Overview of the proposed method of using PPL. PPL uses two separate linear
layers to store separate prototypes depending on the facemask conditions. In the training
process, losses are calculated using the feature embedding and prototype of the correspond-
ing facemask condition. The feature embeddings achieved from unmasked and masked face
images are brought closer directly by PPL-SIM loss.

from the model using PPL can be described as follows:
W(f(x if x = x,
W(f(x)) if x = x,

Since the masked faces were synthesised, we could determine whether an input image x is
wearing a face mask (x,,) or not (x,) in the training process. Each prototype being able to
store representative features depending on the facemask condition enables the model to learn
the optimal extraction methods under varying conditions. This approach of using PPL can
be applied to any type of softmax variant loss previously proposed and it can provide a new
posterior probability. Angular margin loss, one of the representative softmax based losses
for training face recognition networks, can be described as follows:

N es(cos(ml By, +ma)—m3)
; s(cos mlev +my)—ms3) _|_ZJ iy, escosej’ (3)
w.T .
cos0; = i () (4)
Wi ] (i) |

whereas 0; is the angle between prototype W; and feature embedding f(x;), N is the number
of image samples in mini-batch. mj,m,,m3 are margin hyper parameters suggest by [23],
[7], [32] and s is scaling parameter. Angular margin loss in which PPL is applied can be
described as follows:

es(cos(ml 0, +m2) ms3)
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Dataset # of genuine pairs | # of imposter pairs
unmask-mask 3,000 3,000
MEW mask-mask 3,000 3,000
unmask-mask 13,865 8,247,553
MEW-+ mask-mask 5,425 8,040,556

Table 2: Details of the extended MFW+ benchmark compare to the original MFW bench-
mark.

3.2 Embedding similarity loss

As seen in Eq. 5 and Eq. 6, there is no similarity constraint between feature embeddings ex-
tracted from unmasked and masked face. This can lead to low similarity between masked and
unmasked faces and low intra-class compactness. PPL-similarity loss L,/ is added to
this requirement, making masked and unmasked face embeddings directly closer. Similarity
loss L,/ —sim can be calculated as follows:

Ly 4\ (s,

Lopl-sin = ¢ e (1 - (rresm) () 70) )
C is the number of unmasked and masked face pairs existing in a mini batch. Since PPL-SIM
loss requires unmasked and masked face embeddings as inputs, we designed a mini-batch
to include the original unmasked face sample when the synthesised masked face image is
included in the mini-batch. Finally, the PPL applied to the angular margin loss is described
as the combination of modified angular margin loss Eq. 5 and embedding similarity loss Eq.
7:

Lppl = Lpplfcls +Lpplfsim (8)

The overall process of model training using PPL can be seen in Fig. 2.

4 Experiments

4.1 MFW+ dataset

The original MFW, published for the masked face recognition benchmark is composed of 300
IDs and 3,000 images. With two duplicate IDs found in MFW, MFW actually contains 298
IDs and 2,980 images. To evaluate models under variant mask conditions and environments,
we gathered supplement data manually from the web. The refined and extended MFW, which
we named MFW+, contains 606 IDs, 2,911 unmasked face images, and 2,838 masked face
images. We used this MFW+ dataset to construct genuine pairs and imposter pairs according
to the two facemask conditions (i.e., unmasked-masked faces and masked-masked faces).
All possible face pair combinations were used to construct genuine pairs and imposter pairs.
Table. 2 describes the details of the MFW+ dataset and comparison with the original MFW
dataset. More details of the MFW+ dataset are included in supplementary material section.

4.2 Implmentation details

For training, we generated masked face data from the MS-CELEB-1M dataset using the face
mask synthesis method proposed by [15]. The resulting Masked-msceleb dataset consisted
of 93K IDs with 4.6M masked face images paired with 4.6M unmasked face images. Images
used for training and testing were aligned to a size of 112 x 112 following the method used
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Method Clean face benchmark Masked face benchmark
LFW | IIB-B | IIB-C | MFW+ (U-M) | MFW+ (M-M)

(1) CosFace, without synthesis(m=0.35) [32] | 99.33 | 93.89 | 95.22 62.86 59.28

(2) CosFace(m=0.35) 99.18 | 92.59 | 94.03 80.73 75.93

(3) ArcFace, without synthesis(m=0.50) [7] 99.38 | 94.29 | 95.68 70.27 64.79

(4) ArcFace(m=0.50) 99.20 | 92.81 | 94.52 83.03 77.70

Table 3: Performance degradation on unmasked face recognition caused by masked face
data. The 1:1 verification accuracy(%) is reported on LFW benchmark. We also report the
verification accuracy of 1JB-B, [JB-C and MFW+ on TAR@FAR = le-4. Written U in the
table represents an unmasked face while M represents a masked face.

Method Clean face benchmark Masked face benchmark
LFW | CFP-FP | CPLFW | AgeDB | CALFW | IJB-B | IIB-C | MFW+ (U-M) | MFW+ (M-M)
(1) CosFace(m=0.35) [32] 99.18 93.30 88.15 97.55 95.08 92.59 | 94.03 80.73 75.93
(2) ArcFace(m=0.50) [7] 99.20 92.51 88.68 97.62 95.47 92.81 | 94.52 83.03 71.70
(3) CurricularFace [17] 99.23 93.04 87.78 97.32 95.22 91.57 | 93.46 78.36 74.80
(4) BroadFace [21] 99.27 92.43 88.57 97.45 95.35 92.69 | 94.43 83.18 77.88
(5) AdaFace [20] 99.30 92.87 89.27 97.53 95.53 93.29 | 95.02 83.54 78.27
(6) FocusFace (ArcFace) [26] 99.27 92.43 88.78 97.6 95.53 93.05 | 94.69 83.40 77.77
(7) Masklnv-HG (ArcFace) [18] | 99.3 93.46 89.13 97.82 95.6 93.40 | 94.92 83.82 78.36
(8) CosFace + PPL 99.3 94.99 88.9 97.98 95.63 93.65 | 94.99 80.50 75.59
(9) ArcFace + PPL 99.33 94.1 89.65 98.07 95.7 93.59 | 95.25 83.69 78.80
(10) AdaFace + PPL 99.35 94.74 89.97 98.03 95.7 94.14 | 95.58 84.27 78.27

Table 4: Benchmark results by different methods. We compared the models trained with
the methods previously published with the model trained with suggested PPL. The 1:1
verification accuracy(%) of LFW, CFP-FP, CPLFW, AgeDB-30, and CALFW benchmarks
is reported. We also report the verification accuracy of 1JB-B, IJB-C, MFW+(U-M) and
MFW+(M-M) on TAR@FAR = 1e-4.

in [23], and normalised to an average value of 0.5 and a standard deviation of 0.5 so that
the pixel values were O to 1. The IR-SES50 proposed by [7] was used as the backbone and
features were extracted with a size of 512 dimensions. The batch configuration consisted
of 256 unmasked face samples and 256 masked face samples, which made the size of the
mini-batch 512 in total. Stochastic gradient descent (SGD) was used as the optimizer, and
weight decay was set to Se-4 and momentum to 0.9. The learning rate started at 0.1 for initial
learning and was scheduled to be multiplied by 0.1 at 10, 16, and 22 epochs. The training
ended at 25 epochs.

4.3 Model evaluation

To test the recognition performance of the proposed approach, the recognition performance
for unmasked and masked faces was measured using various data sets. To verify the recog-
nition performance for unmasked faces, LFW [16], CFP-FP [28], CPLFW [36], AgeDB-30
[25], and CALFW [37] were used along with [JB-B [35] and IJB-C [24] benchmarks. As
for verifying the recognition performance for masked faces, the MFW+ benchmark was
used. We also evaluated models on IFRT [10] challenge, which provides both unmasked and
masked face recognition benchmarks.

Degradation in unmasked face recognition. To observe the degradation in unmasked face
recognition caused by masked face data, the models in Table. 3 (1) and Table. 3 (3) were
trained using only the original unmasked face data from Masked-msceleb. As shown in
Table. 3, training a model with masked face data leads to performance degradation in un-
masked face recognition. Models trained with ArcFace and synthesised masked face data
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Method Childeren | African | Caucasian | South Asian | East Asian All Mask
(1) CosFace 42.95 46.56 63.14 50.65 31.51 51.75 | 73.86
(2) ArcFace 49.33 54.40 71.57 59.66 37.73 60.18 | 79.99
(3) CurricularFace 36.39 41.79 61.18 47.50 24.56 44.63 | 73.57
(4) BroadFace 49.32 54.87 71.55 59.37 40.02 61.79 | 80.20
(5) AdaFace 51.01 57.32 73.86 62.06 41.03 62.71 | 80.82
(6) FocusFace (ArcFace) 52.08 57.90 74.19 61.95 41.68 64.01 | 79.87
(7) MaskInv-HG (ArcFace) 52.35 61.08 76.54 67.29 47.68 68.92 | 78.78
(8) CosFace +PPL 50.14 59.28 74.43 64.47 45.16 65.49 | 74.96
(9) ArcFace +PPL 54.37 66.77 80.49 71.75 52.35 73.32 | 78.99
(10) AdaFace +PPL 56.97 68.97 82.41 75.40 54.81 75.55 | 80.90

Table 5: Benchmark results by different methods on IFRT.

suffer 0.18% degradation in LFW, compared to models trained without synthesised data. For
IJB-B and IJB-C, performance degradations of 1.48% and 1.16% were recorded. However,
training with synthesised masked face data resulted in a 12.76% performance improvement
in the MFW+(U-M) benchmark and a 12.91% performance improvement in the MFW+(M-
M) benchmark. Similarly, the model trained with CosFace performed better on masked face
recognition, although the performance degraded in unmasked face recognition when the syn-
thesized masked face data was included in the training dataset.

Effects of PPL. Although the proposed PPL could not completely prevent the performance
degradation of unmasked face recognition caused by masked face data, PPL made it possible
to obtain remarkable performance elevation for both unmasked and masked faces compared
to the model trained without PPL. As shown in Table. 4, model trained using ArcFace with
PPL showed a performance improvement of over 0.13% on the LFW dataset, 1.59% on CFP-
FP, and over 0.45% on AgeDB-30 compare to model using ArcFace only. For IJB-B and
IJB-C datasets, accuracy improvements of 0.78% and 0.73% were observed. In masked face
recognition, the model trained using ArcFace with PPL showed a performance improvement
of over 0.66% in the MFW+(U-M) benchmark and over 1.1% in the MFW+(M-M) bench-
mark compared to the model trained with ArcFace without PPL. Even for other approaches,
such as cosface and adaface, models trained using PPL achieve remarkable performance im-
provements in unmasked face recognition compared to models trained only with cosface and
adaface. Interestingly, the performance gap between models with and without PPL in mask
face recognition is not large, but similar. This means that models trained with single proto-
type mainly use the upper part of the face to extract features.

Comparison with other methods for masked face recognition. To confirm the effective-
ness of PPL, we compared our method with other approaches for masked face recognition.
For a fair comparison, both FocusFace [26] and Mask-Inv [18] were trained using ArcFace
loss. All methods were equally trained with the scratch manner as described in 4.2. And
in the case of Mask-Inv, a pure ArcFace model trained only on the unmasked face data re-
ported in Table. 3 (3) was used as the teacher model. As can be seen from the Table. 4 and
Table. 5, PPL+ArcFace achieved comparable performance with the FousFace and MaskInv
in masked face recognition. However, model trained with PPL achieved a significant perfor-
mance gap in the clean face benchmark compared to other approaches. The model trained
with PPL showed a performance gap of 9.31% compared to FocusFace and 4.4% compared
to maskInv-HG in IFRT-AIll. These results show that prototype separation is a very effective
and simple way to protect models from performance degradation caused by masked face
data.
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Method Consistency | Utilisation | IJB-B | IJB-C | MFW+ (U-M) | MFW+ (M-M)
(Baseline) Single prototype - - 92.81 | 94.52 83.03 77.70
(a) Random forward (-) 0.000 1.000 92.70 | 94.28 81.84 7591
(b) Random forward 0.000 1.000 92.74 | 94.37 83.66 78.65
(c) Max pooling 0.993 0.004 92.48 | 94.16 82.38 76.81
(d) PPL (-) 1.000 1.000 93.52 | 95.17 81.74 76.59
(e) PPL 1.000 1.000 93.59 | 95.25 83.69 78.80

Table 6: Recognition performance by linear layer configurations. TAR@FAR=1e-4 is re-
ported on IJB-B, IJB-C, MFW+. (-) in the table indicates the trained model without embed-
ding similarity loss.

5 Discussion

5.1 Effect of prototype separation

In order to verify that forwarding the embeddings depending on the face mask condition is
important, we compared and analysed six models trained with different linear layer config-
urations. The models in Table. 6 (a) and Table. 6 (b) are the model which forwards the
embeddings to linear layers regardless of the mask conditions. The model in Table. 6 (c) is
a model that forwards embeddings to closer prototypes using max pooling proposed by [9].
The models in Table. 6 (d) and Table. 6 (e) are the model which forwards the embeddings
to separate linear layers depending on the mask conditions, as proposed in PPL. All three
conditions used ArcFace loss for classification loss. To evaluate how the prototypes were
constructed according to each of the three conditions, two values were measured at the end
of the training stage: prototype consistency and prototype utility. Prototype consistency was
measured to determine how consistently an embedding was multiplied by a specific proto-
type. The prototype consistency was calculated as follows:

C

. 1 . - 2 2
Consistency = C Z (1 + (Piill_’i lOgZ(milﬁ,-) + pfﬁpi lng(I,ipT’pl.))> )
i=1

We also measured prototype utility to determine whether the two separate linear layers were
fully utilised. Prototype utilisation was calculated as follows:

C

1
Utilisation =1 — —
Ci:ZI n;+n;

|ni — i

(10)

In the equation, C is the total number of classes. p; and n; are the number of the unmasked
face embeddings and the number of total embeddings in class i, which are to be multiplied
with prototype W;. p; and 7; are the number of clean face embeddings and the number of
total embeddings in class i, which are to be multiplied with prototype W;. High prototype
consistency indicates that each prototype consists of a consistent images based on mask
conditions. High prototype utility indicates that the model uses both prototypes equally in the
training phase. Table. 6 shows each model’s prototype consistency, utility, and bench results.
The model trained using PPL was the only model with high consistency and utility and
showed the best performance compared to other models. As seen in Table. 6, maxpooling
cannot utilise both prototypes equally. This is because once the embeddings are passed to
the linear layer, one prototype is fixed as identity center, preventing other prototypes from
being composed of another images. Therefore, maxpooling may suitable for training label
noise data but not for masked face data.
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Figure 3: Effect of PPL-SIM loss in training. (a) Cosine similarities between unmasked and
masked face embeddings, (b) TAR@FAR=1e-4 on IJB-B, (c) TAR@FAR=1e-4 on IJB-C,
(d) TAR@FAR=1e-4 on MFW+(U-M), and (¢) TAR@FAR=1e-4 on MFW+(M-M).

5.2 Analysis of PPL-SIM loss

To evaluate how PPL-SIM loss effects on the training using PPL, we modified Eq. 8 as
follows:
Ly = Lppi—cis + ALppi—sim (11)

As the equation shows, the hyperparameter A allows the PPL to decide whether to use the
PPL-SIM loss. As shown in Fig 3, the model trained using PPL with PPL-SIM loss (A = 1.0)
had a higher similarity between masked and unmasked faces and better recognition perfor-
mance compared to the model trained without PPL-SIM loss (A = 0.0). However, this does
not mean that achieving high similarity between masked and unmasked faces achieves high
performance. The model trained without PPL recorded lower recognition performance com-
pared to the model trained using PPL, although it had higher similarity between masked and
unmasked face embeddings. Interestingly, achieving excessive similarity between unmasked
and masked faces does not guarantee high performance in both unmasked and masked face
recognition. Again, the key of PPL is the separation of prototypes based on mask conditions,
which allows the model to compare training samples to appropriate prototypes.

6 Conclusion

We proposed PPL that can achieve robust recognition of faces with and without facemasks.
This study found that using a single prototype is not reasonable when training model with
synthesised masked face data and designed an approach of using separated prototypes in
training. The proposed method PPL (Pairwise Prototype Learning) can prevent the perfor-
mance degradation in unmasked face recognition and enable models to achieve promising
accuracy on masked face recognition. This approach can be regarded as a strategy to ac-
tively overcome occlusion, which is considered as a major obstacle in face recognition and
will inspire future research by publishing a meaningful dataset of masked faces.
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