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Abstract

Noisy hepatic vessel labels from Computer Tomography (CT) are popular due to ves-
sels’ low-contrast and complex morphology. This is challenging for automatic hepatic
vessel segmentation, which is essential to many hepatic surgeries such as liver resec-
tion and transplantation. To exploit the noisy labeled data, we proposed a novel semi-
supervised framework called dual consistency assisted multi-confident learning (DC-
Multi-CL) for automatic hepatic vessel segmentation. The proposed framework con-
tains a dual consistency architecture that learns not only the high-quality annotation data
but also the low-quality data by boosting the prediction consistency on low-quality la-
beled data robustly. Furthermore, we also present a multi-confident learning compo-
nent to exploit the capability of global context information from multi-level network
features and eradicate the human efforts on refining the low-quality data. Combining
these ideas, we believe that it raises a potentially valuable approach to handle segmen-
tation task, especially when the annotation data are noisy, e.g. unlabeled and misla-
beled voxel-wise. Extensive experiments on two public datasets, i.e. 3DIRCADb and
MSDS8, demonstrate the effectiveness of each component and the superiority of the pro-
posed method to other state-of-the-art methods in hepatic vessel segmentation and semi-
supervised segmentation. The implementation of DC-Multi-CL is available at: https:
//github.com/VinBrainJSC/DualConsistency_Mutil-CL.git.
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1 Introduction

Hepatic vessel segmentation is essential to identify the liver segments toward helpful guid-
ance for liver resection and transplantation. Recently, a deep learning approach to auto-
matically segment hepatic vessels from computer tomography has been promising [5, 9, 20].
However, a good deep learning segmentation model often requires a great number of CT data
and their ground-truth, i.e. high-quality (HQ) voxel-wise annotations. Low-quality (LQ) an-
notations lead to undesirable performance degradation in deep learning. Meanwhile, labeling
the hepatic vessels in CT is difficult and time-consuming due to expertise-demanding, com-
plex morphology, noise, pathological variations, and poor contrast, resulting in a limited
number of HQ vessel annotations. Therefore, it has been of interest for researchers to train
deep models for hepatic vessel segmentation given only a few HQ-annotated data and a pop-
ular LQ-annotated data of hepatic vessel data. Semi-supervised learning (SSL) is the most
appropriate approach to explore the auxiliary image information from additional datasets and
regularize the learner.

Related Work. To tackle the shortage of labeled data, many researchers have approached
semi-supervisied learning to leverage large amounts of unlabeled data toward improving
the performance of supervised learning over the small labeled dataset. Advanced semi-
supervised learning techniques in medical image segmentation often are based on adver-
sarial training, pseudo-labeling, and consistency regularization [2, 4, 6, 12, 13, 18, 19].

Consistency regularization with the perturbation-based methods [12, 18] has been most
widely used in semi-supervised segmentation. These methods enforce the consistency of
the predictions/intermediate features by adding small perturbations to unlabeled samples, in
which the decision boundary should lie in low-density regions. Mean Teacher [ 18] methods
impose consistency over perturbed inputs or augmented images, encouraging the model to
produce similar output/distributions for the perturbed inputs. Meanwhile, Cross-Consistent
Training (CCT) [12] enforces consistency between the main decoder predictions and those
of the auxiliary decoders in which the main decoder is fed by the encoder’s output and the
auxiliary decoders are fed by the encoder’s output with perturbations. Thus, CCT is able to
improve the representation of the encoder.

PseudoSeg [25] explores pseudo segmentation for SSL by using the pseudo-segmentation
of a weakly augmented image to supervise the segmentation of a strongly augmented image
based on a single segmentation network. Cross Pseudo Supervision [2] adopts two identi-
cally and independently initialized segmentation networks with the same input and uses each
network’s pseudo segmentation maps to supervise the other network. These existing meth-
ods, though, have shown being able to leverage knowledge from unlabeled data for learning
but not utilize the potentially useful information of the LQ label.

In addition, to fully exploit the noisy labeled data, recent works have proposed to de-
crease the negative effects brought by the noisy labels, such as assigning lower weights to
the noisy labeled samples [14, 24], modeling the label corrupting process [3] and confident
learning [11]. However, these studies were initially proposed for the classification problem,
while the localization of pixel-wise noises is necessary for segmentation. Recently, Xu et
al. [21] firstly proposed an SSL framework, which uses the mean teacher-assisted confident
learning to take advantage of the noise from the low-quality labeled data towards superior
vessel segmentation performance. In our method, we leverage the confident learning module
performance by utilizing more meaningful contextual information from all scales to produce
the maximum confident guidance for segmentation networks.
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To summarize, our the contributions of this study are highlighted as follows:

* We proposed a dual consistency to encourage scale consistency for an input from LQ
labeled data. It leverages both low- and high-quality annotations by the interpolation
consistency mechanism to further encourage prediction consistency on low-quality
labeled data robustly. Besides, the dual consistency also enforces the consistency of
the LQ labeled data by the cross pseudo supervision as inspired by [2].

¢ We introduce the interpolation consistency training (ICT), which was initially pro-
posed for the classification problem, into the vessel segmentation, aiming to encour-
age the consistency among the predictions of the unlabeled data via the interpolation
instead of adding small perturbation [21]. Furthermore, we adopt the multi-scale con-
sistency at the interpolation sample to further exploit the prediction discrepancy of the
segmentation model.

* We introduce Multi-Confident Learning (Multi-CL) as the upgrade version of confi-
dent learning with the guidance maps aggregated from multiple scales instead of the
one from the last scale. Multi-CL, thus, utilizes the capability of global context in-
formation from the multi-level network features and avoids information lost during
the upsampling process. With the help of interpolating consistency and incorporating
uncertainty as weights across different scales, Multi-CL can also benefit from better
exploiting the prediction discrepancy of segmentation models at multiple scales.

* We conduct extensive experiments on two public liver vessel datasets, i.e. 3DIRCADb
and MSD8, with five-fold cross-validation. The proposed DC-Multi-CL is state-of-
the-art compared to other existing SSL methods on the hepatic vessel segmentation.

2 Methods

2.1 Datasets

In this study, we used two public datasets, i.e. 3DIRCADb [1] and MSDS8 [17], which
are referred as high-quality and low-quality datasets, respectively (see the visualization in
Fig. 1). The 3DIRCADD dataset consists of 20 CT scans of the enhanced portal venous phase
with corresponding HQ vessel annotation. Each scan consists of around 74 to 260 slices with
the thickness ranging from 1 mm to 4 mm. All slices in the scans are axial with a size of 520
x 520 pixels, and the pixel spacing is in the range of 0.56 + 0.86 mm. The MSDS dataset
consists of 443 CT hepatic scans with LQ vessel annotations, i.e. approximately 65.5%
vessel is unlabeled and around 8.5% labeled vessel is misclassified [8]. Each scan comprises
axial slices with a slice thickness from 0.8 to 8 mm and pixel spacing from 0.57 + 0.98 mm.

2.2 Dual consistency assisted multi-confident learning framework
2.2.1 Overview of the proposed method

Our proposed DC-Multi-CL framework architecture consists of two parallel segmentation
networks Fj(.) and F»(.), as manifested in Fig. 2. Specifically, the aim of Fj(.) network is
to learn the main features from the input data, while the F>(.) acts as the auxiliary network
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(a) Set-HQ: 3DIRCADB ‘ (b) Set-LQ: MSD8

Figure 1: 2D visualization of (a) 3DIRCADD dataset [1] (Set-HQ), and (b) MSDS dataset
[17] (Set-LQ). Green patterns represent the labeled vessels and red arrows point at unlabeled

pixels.
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Figure 2: Illustration of the proposed dual consistency assisted multi-confident learning
framework for automatic hepatic vessel segmentation.

to provide potentially useful information from noisy labels during the training process. Note
that our proposed method only uses the prediction of Fj(.) for the inference process. We ex-
perimentally find that the noisy labels effectively significantly enhance the prediction quality
of the entire segmentation model.

In detail, we select the backbone segmentation network as U-net [15], which can pro-
duce pyramid predictions at different scales [10]. These two network sharing have the
same structure and are initialized differently. They produce a set of multi-scale predictions
[P10: P11, s Plsy s P1(s—1)] and [p2o, P21, ..., P2ss -+, P2(s—1)] for an input image x;, respec-
tively, where the p. is the prediction at scale s, and a smaller s corresponds to a higher
resolution in the decoder. § is the number of scales in the pyramid prediction.

2.2.2 Dual consistency

Let Dyg and Dy g be the high-quality labeled data and noisy labeled (low-quality) data. We
denoted a labeled image pair as (x;,y;) € Drg, Where y; is ground truth and a noisy labeled
image pair as (x;,;), where noisy samples x; with its label is 3;. The supervised branch
exploits HQ-labeled data by calculating L, the combination of the standard cross-entropy
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Figure 3: Illustration of the proposed multi-confident learning.

loss and dice loss at multiple scales:

157] 1 1
L=3 5\ Lace(P15(xi),yi) ) + Lace (p2s(xi), i) |
SSZO|DHQ|x,~e§'HQ2( dee (P15(xi), 1)) + Lace (P2 (x)y)) (1)

where y;, L., denote the ground truth of input x; and the combination of dice loss and the
cross-entropy loss.

In the unsupervised branch, we further enhance consistency on two segmentation networks
by combining interpolation consistency on multi-scale predictions. This not only forces the
Fi(.) network to learn better features but also allows the F>(.) network to take advantage of
confident learning to produce the potential high quality refined data.

1. In order to learn from images of set LQ with pseudo labels, we use the pixel-wise
one-hot label map Y;¢ output from one network Fj(.) to supervise the pixel-wise confidence
map pyo of the other network F»(.) and vice versa. The cross pseudo supervision loss at the
highest resolution scale pg and pyg in the decoder on the Set-LQ is written as:

1
‘Ccps = Z (Lce (plO(Xi)aY20) +Lee (PZO(Xi),YIO))- 2

|DLQ | X,'GDLQ

2. Following a mixup [23] operation: Mix; (a,b) = Aa+ (1 — A1)b. We denote a noisy
labeled image as x;,X; € Dy . To get more conservative consistent regularization, we use the
ICT [19] for each different scales of decoder to encourage the model Fj (.) to predict the fake
label Mix, (F»(.,x;), F2(.,x)) at interpolation location Mix;, (x;,x; ). Following [23], on each
update, we sample a random A from B(a, ). The unsupervised interpolation consistency
loss L, at multi scales is written as:

1571

Lus == Z Z MSE (pls(xm)aMiXA (pZS(Xi)va?(Xk)))a 3)

S s=0n;,n €D

where x,,, = Mix; (x;,X;) and MSE is the mean squared error.
3. Inspired by previous works [10], to better exploit the prediction discrepancy of seg-
mentation model at interpolation location Mix (x;,x;) with multiple scale, we adapt a novel


Citation
Citation
{Zhang, Cisse, Dauphin, and Lopez-Paz} 2017

Citation
Citation
{Verma, Kawaguchi, Lamb, Kannala, Bengio, and Lopez-Paz} 2022

Citation
Citation
{Zhang, Cisse, Dauphin, and Lopez-Paz} 2017

Citation
Citation
{Luo, Liao, Chen, Song, Chen, Zhang, Chen, Wang, and Zhang} 2021


6 NAM*, TUAN*, VINBRAIN JSC.: DUAL CONSISTENCY ASSISTED MULTI-CL

uncertainty rectified pyramid consistency loss for the predictions at the interpolation location
X,,. First, we denote the average Fj (.) network prediction at the interpolation x,, across these
scales as p. = S ): D1s(Xim). Then, we formulate an efficient uncertainty estimation based

s=0
on pyramid predictions at the interpolation X,,.

Specifically, we use the KL-divergence between the average prediction and the prediction

at scales as the uncertainty measurement D; = Z ph (Xm) - log where P{S(Xm) is the

pl

j=0 P'{x (Xm) ’

" channel of P1s(Xim), and C is the class number. The approximated uncertainty shows the

difference between the pi5(x,,) and p.. Note that for a given pixel in D;, a larger value

indicates the prediction for that pixel at scale s is far from the other scales. As result, we

obtain a set of an uncertainty maps Dy, D1, ...,Ds—1 where Dy corresponds to uncertainty of

P1s(Xy). Finally, the uncertainty rectified pyramid consistency (URPC) loss at each scale of
location x,,, is written as:

RS X (P (k) —p8) "o wd | 15
L i 5=0 &=ty ls c s 4= D , 4
SR v s 1y 1P @

where pY, and Dy are the corresponding prediction and uncertainty values for pixel v. We
use a pixel- and scale-wise weight wy to automatlcally rectify the MSE loss [10]. The weight
for a pixel v at scale s is defined as: wj = e~ D5 it corresponds to pixel-wise exponential
operation for —Dj.

2.2.3 Self denoised label aggregated by Multi-Confident Learning (Multi-CL)

As the confident learning technique method was first proposed for pruning mislabeled sam-
ples and improved the training by estimating the joint distribution between the noisy labels §
and the true (latent) labels y* in image-level classification. Therefore with its assistance, we
want to adapt this method and even enhance its contribution to a higher level by jointly con-
sidering the additional guidance from different scale predictions of the decoder. We describe
this method as multi-confident learning (Multi-CL).

Given a training set X = (X, )", containing n noisy samples x with its label is J, the
binary predicted probability map could be obtained through the F>(.) segmentation network.
Simply taking predictions from argmax operation as an indication of guidance for noisy
labels leads to unsuccessfully counting errors for class imbalance properly or may guess
over-confident for a certain class than others. Thus, we select the predictions by threshold
t; as an alternative. The prediction by thresholding is calculated as the expected predicted
probabilities p;(x) of all examples labeled with j = j: t; = ‘X‘l—:/l Yxex;_; Pj(X).

We flatten the vessel annotation and predictions to 1D vectors, then feed them together
with inputs into the confident learning component to make the algorithm treat each pixel like
an individual image. Then, the confusion matrix can be formed by counting Cy,+ where
each element Cj ,+[i][j] indicates the number of samples x (observed label § = i) may belong
to the true latent label y* = j:

Gy [i][j] = |Xi’:i,y*:j‘» where

X={xeXy_i:pj(x)>1t;,j= argmax pr(x)}. ©)
keM:pi(x>1;)
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After obtaining a confusion matrix Cy -, the joint distribution m x m Qj .« between the true
labels and the noisy labels could be computed as:

C;

“
ZjéMva |Xy l‘

Q5] = (6)

ZieM,jeM(m X5 l|)

Then, Prune By Class (PBC) is the approach we choose to clean data. Particularly,
for each class i € M, the n- ¥ jep j£i(Qy,+[i][j]) samples with lowest self-confidence p(§ =
i;x € X;) are selected as the wrong-labeled samples. The obtained result X indicates the
binary noise identification mask where “1” denotes the potential wrong label pixel and "0"
denotes the potential correct one. Similarly, this method performs exactly the same on multi-
scale predictions from lower to upper layers. We choose the number of scales in the pyra-
mid prediction S = 4. Therefore, as shown in Fig. 3, the binary noise identification masks
Xo,X1,X,, X3 are obtained by putting the noisy label mask with the predictions at its corre-
sponding scales as input for CL module. Then, the four identification masks are aggregated
as:

Xper = 0.4X)+0.3X, +0.2X, +0.1X3, (7)
- 1, Xper >t

chl _ ’ ~mcl = tmcl (8)
Oa mel < Inel -

As the predictions have different spatial resolutions, even when at the last step, they can
be re-sampled to the same shape as the input, the output can also face problems such as
model collapse or loss of fine details due to the different spatial frequencies. Therefore, we
assign the weight of each component to be decreased from high resolution to low resolution.
Moreover, we set the value of threshold 7,,,.; to 0.5 since X, still needs a threshold to define
it back to the original binary noise identification mask. After having X,,.;, rather than directly
imposing it, Self Label Smoothing Regularization (SLSR) can be formulated as:

¥(x) = 5(x) +1(x € Xper) - (—1)7 - p, 9)

where 1(.) is the indicator function and p is the smooth factor. Since CL may have un-
certainties, soft correction is prioritized and p is set as 0.8 empirically. With the obtained
soft-corrected labels, we use the auxiliary self-denoised CL loss L.;, a combination of cross-
entropy loss and focal loss:

1 ﬁdice(pIO(X)vy(X)) +£focal (plO(X)a)}(X))
3 .

L= (10)

|DLQ| XEDLQ

The proposed DC-Multi-CL framework learns from both HQ labeled data and LQ labeled
data by minimizing the following the total loss function:

Etotal = ‘CS + )Lc . ( + ['u.s‘ + l:urpc) + Acl : ‘C(,'/a (11)

where A, A. are two ramp-up weighting functions for balancing different losses.
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3 Experiments

3.1 Experiment settings

We followed the experiment setup MTCL [21] to conduct the report on 3DIRCADb. In
this setup, the vessel probability map based on the Sato tubeness filter [16] was used as an
auxiliary modality input. By doing that, the network could have more robust vessel sig-
nals instead of relying entirely on the processed images. To further increase the reliability,
we conducted 5-fold cross-validation for all experiments, which is a more accurate method
than picking random samples [21] as a validation dataset. Specifically, within each fold in
semi-supervised learning methods, sixteen HQ cases and the whole LQ dataset were used
for training, and the remaining four HQ cases were for evaluation. In contrast, for fully
supervised learning methods, only the HQ dataset was used for training and validating due
to the previous study [5, 20, 22] shows that mixing both these datasets could make degrade
model performance.

We adopted Dice Score (DSC) and 95% Hausdorff Distance (HD95) to evaluate the
segmentation performance. The experiments were implemented in PyTorch and trained
on NVIDIA Tesla A100 with 80GB RAM. We utilized SGD optimizer (momentum = 0.9,
weight_decay = 0.0001) to train the whole network for 40000 iterations with batch size of
4. The base learning rate was set as 0.01 and decay by a factor of (1 — —ir_)0.9,

max_iter

3.2 Performance and Comparison

A comprehensive comparison with existing methods was conducted under the same exper-
imental environment and dataset settings to make the results more convincing, as shown in
Table 1. This section compares our proposed DC-Multi-CL framework with both SOTA
semi-supervised segmentation approaches and fully supervised segmentation methods for
hepatic vessel segmentation.

Table 1: Comparison on 3DIRCADD for different methods.

Learning approaches Methods DSCt HD|
. . U-net [5] 64.01£5.11 9.50+£2.03
Supervised learning .
Swin-Unet [20] 63.95+3.61 9.99+1.46
MT [18] 65.78+4.17 8.55+1.36
. . . URPC [10] 66.47+4.94 8.49+1.23
Semi-supervised learning
CCT [12] 66.10+4.47 8.85+1.25
CPS [2] 66.55+4.19 8.85+1.63
Semi-supervised learning MTCL [21] 66.29+4.87 8.75+1.38
with LQ and HQ data Proposed 67.41+4.68 8.38+1.56
DC-Multi-CL

In addition, some methods were evaluated on manually refined annotations [5], or spe-
cific data augmentation strategies like filters [7], leading to poor transparency results, so we
do not consider these results with ours. All methods were reimplemented in 2D and using
U-net [15] as the backbone for a fair comparison. Then, all methods were evaluated on Set-
HQ. From the quantitative comparison of Table 1, our proposed method outperforms all the
compared ones. Specifically, compared with the semi-supervised approach MTCL [21], the
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average DSC increases from 66.29% to 67.41%. In terms of HD-95, our proposed method
also achieves remarkable improvement. As demonstrated in Fig. 4, our method has fewer
false negatives (green color) and false positives (yellow color) than other methods.

U-net MTCL Ours Proposed U-net MTCL

Ours Proposed

a) Image 1 b) Image 2

Figure 4: Visual comparison results on 3DIRCADDb dataset. Orange indicates the correct
segmented area, green the false negative and yellow the false positive.

4 Ablation Study

Effectiveness to each component. We conduct experiments to analyze the contributions of
our proposed method. Table 2 shows that whether using Multi-CL alone or ICT alone, the
performance of our proposed method always gains significant improvement, and the accom-
plished results could be even better when combining those components. This demonstrates
that each proposed component plays a crucial role in our framework.

Table 2: Ablation study of the proposed framework on 3DIRCADb with 5-fold cross-
validation. DC-Multi-CL: the proposed dual consistency assisted multi-confident learning
framework, CPS: Cross pseudo supervision, ICT: Interpolation consistency training, Multi-
CL: Multi confident learning, URPC: Uncertainty rectified pyramid consistency.

Method DSCt HD,

CPS [2] 66.55+4.19 8.85+1.63
CPS+ICT 66.53+4.54 8.51£1.51
CPS+Multi-CL 66.62+4.60 8.62+1.33
CPS+ICT+Multi-CL 66.71+4.62 8.73£1.43
CPS+URPC 66.53+4.15 8.53+£1.25
CPS+ICT+URPC 66.87+3.90 8.58+0.94
CPS+Multi-CL+URPC 66.60+3.69 8.76£1.12
Proposed DC-Multi-CL 67.41+4.68 8.38£1.56

Note that in our experiment, we also compare the results produced by the URPC component
alone without other integrated solutions. Based on Table 2, the experiment result does not
show a significant improvement if used individually.

Can DC-Multi-CL be robust with other semi-supervised architecture? To prove the
robustness, we further adapted our methods with commonly used semi-supervised architec-
tures such as MT [18]. Regarding the 5-fold cross-validation set performance (as shown in
Table 3), our proposed framework for the MT improve 1.48% in DSC and 0.21 in HD-95
compared to MT [18].
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Table 3: Ablation study of the proposed framework on 3DIRCADb of Mean Teacher semi-
supervised methods with 5-fold cross-validation.

Method DSCt HD,|

MT [18] 65.78+4.17 8.55+1.36
MTCL [21] 66.29+4.87 8.75£1.38
MT+URPC 66.65+4.07 8.63+1.26
MT+ICT+URPC 67.05+4.42 8.31+1.28
MT+Multi-CL+URPC 66.58+4.21 8.45+1.33
(Proposed) MT+DC-Multi-CL 67.26+4.38 8.34+1.25

Robustness to multi-confident learning. To verify the guiding role of multi-confident
learning against confident learning [21], we present a visual comparison in Fig. 5. It is
observed that multi-confident learning yields better blood vessel structure with clear and
precise boundaries. Our method not only retains all the important information in the CL
denoised label but also yields better blood vessel structure with clear and precise boundaries
based on the amount of information aggregated from multi scales. Thus, multi-confident
learning would be able to detect details that CL may have missed and produce more similar
results to the ground truth.

Image 1 Noisy Label  Denoised Label Denoised Label Image 2 Noisy Label Denoised Label  Denoised Label

with CL with Multi CL with CL with Multi CL

Figure 5: Illustration of the mutil-confident learning performance for the MSD8 dataset.

5 Conclusion

This paper introduces a dual consistency assisted multi-confident learning framework for
dealing with a shortage of high-quality data in the challenging hepatic vessel segmenta-
tion task. The proposed framework is trained with a small amount of high-quality labeled
data and many noisy labeled data. With the effort of applying dual consistency training to
generate consistent predictions and the refined noisy data produced by the multi-confident
learning module, our proposed method significantly exceeds the previous state-of-the-art in
vessel segmentation tasks. The intensive experiments also demonstrate the extraordinary
promise of the proposed approach with a consistent segmentation improvement when inte-
grating these components into different semi-supervised methods.
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