

Dual consistency assisted multi-confident learning for the hepatic vessel segmentation using noisy labels Nam Phuong Nguyen*, Tuan Van Vo*, Soan T. M. Duong, , Chanh D. T. Nguyen, Trung Bui, Steven Q. H. Truong

Introduction

- •Automatic hepatic vessel segmentation system is essential to identify the liver segments toward helpful guidance for liver resection and transplantation.
- Noisy hepatic vessel labels Computer Tomography (CT) are popular due to vessels' low-contrast and complex morphology.
- A good deep learning segmentation model often requires a great number of CT data and their ground-truth, i.e. high-quality (HQ) voxel-wise annotations.
- Low-quality (LQ) annotations lead to undesirable performance degradation in deep learning.
- Semi-supervised learning is the most appropriate approach to explore the auxiliary information from additional datasets and regularize the learner.

Datasets

We used two public datasets:

- 3DIRCADb: high-quality dataset;
- MSD8: low-quality dataset.

(a) Set-HQ: 3DIRCADB (b) Set-LQ: MSD8 Fig. 1: 2D visualization of two datasets. Green patterns represent the labeled vessels and red arrows point at unlabeled pixels.

*These two authors contributed equally to this work. This project was supported by VinBrain JSC.

Method

from

Fig. 2: Overview of the proposed DC-Multi-CL. DC-Multi-CL framework learns from both HQ labeled data and LQ labeled data by minimizing the total loss function: $\mathcal{L}_{total} = \mathcal{L}_s + \lambda_c \cdot (\mathcal{L}_{cps} + \mathcal{L}_{us} + \mathcal{L}_{urpc}) + \lambda_{cl} \cdot \mathcal{L}_{cl}$ where:

- L_s : supervised loss , L_{cos} : cross pseudo supervision loss,
- L_{us}: unsupervised interpolation consistency loss,
- L_{urpc}: uncertainty rectified pyramid consistency loss,
- L_{cl}: auxiliary self-denoised Confident Learning loss,
- λ_{c}, λ_{c} : hype-params to trade-off b/w losses.

Fig. 3: Ilustration of the proposed multi-confident learning.

and

Results

Hausdorff distance (HD).

Learning approaches	Methods	DSC↑	HD↓
Supervised learning	U-net [5]	64.01±5.11	9.50±2.03
	Swin-Unet [20]	63.95±3.61	9.99±1.46
Semi-supervised learning	MT [18]	65.78±4.17	8.55±1.36
	URPC [10]	66.47±4.94	8.49 ± 1.23
	CCT [12]	66.10±4.47	8.85 ± 1.25
	CPS [2]	66.55±4.19	8.85 ± 1.63
Semi-supervised learning with LQ and HQ data	MTCL [21]	66.29±4.87	8.75±1.38
	Proposed DC-Multi-CL	67.41±4.68	8.38±1.56

Fig. 4: Visual results on 3DIRCADb dataset. Orange indicates the correct segmented area, green the false negative and yellow the false positive.

Noisv Label Image 2 Noisy Label Denoised Label with Multi CL Fig. 5: Illustration of the mutil-confident learning performance for the MSD8 dataset.

Ablation study

Table 2: Effective

- Method
- CPS [2]
- **CPS+ICT**
- CPS+Multi-CL
- CPS+ICT+Multi-CL
- CPS+URPC
- CPS+ICT+URPC
- CPS+Multi-CL+URPC
- **Proposed DC-Multi-CL**
- Source code available at:

• DC-Mutil-CL vs. other SOTA methods Table 1: Comparison of DC-Mutil-CL to other SOTA methods in terms of Dice score (DSC) and

b) Image 2

eness to each component.			
DSC↑	HD↓		
66.55±4.19	8.85±1.63		
66.53±4.54	8.51±1.51		
66.62 ± 4.60	8.62 ± 1.33		
66.71±4.62	8.73±1.43		
66.53±4.15	8.53±1.25		
66.87±3.90	8.58 ± 0.94		
66.60±3.69	8.76±1.12		
67.41±4.68	8.38±1.56		

<u>https://github.com/VinBrainJSC/DualConsistency_Mutil-CL.</u>