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Abstract

We introduce a memory-driven semi-parametric approach to text-to-image generation,
which is based on both parametric and non-parametric techniques. The non-parametric
component is a memory bank of image features constructed from a training set of images.
The parametric component is a generative adversarial network. Given a new text descrip-
tion at inference time, the memory bank is used to selectively retrieve image features that
are provided as basic information of target images, which enables the generator to produce
realistic synthetic results. We also incorporate content information into the discriminator,
together with semantic features, allowing the discriminator to make a more reliable predic-
tion. Experimental results demonstrate that the proposed memory-driven semi-parametric
approach produces realistic images, compared to purely parametric approaches, in terms
of both visual fidelity and text-image semantic consistency.

1 Introduction
How to effectively produce realistic images from given natural language descriptions with
semantic alignment has drawn much attention, because of its tremendous potential applica-
tions in art, design, and video games, to name a few. Recently, with the vast development
of generative adversarial networks [7, 8, 33] in realistic image generation, text-to-image
generation has made much progress, where the progress has been mainly driven by paramet-
ric models — deep networks use their weights to represent all data concerning a realistic
appearance [4, 12, 21, 22, 24, 26, 39, 40, 49, 50, 51, 56].

Although these approaches can produce realistic results on well-structured datasets,
containing a specific class of objects at the image center with fine-grained descriptions, such
as birds [48] and flowers [36], there is still much room to improve. Besides, they usually
fail on more complex datasets, which contain multiple objects with diverse backgrounds,
e.g., COCO [30]. This is likely because, for COCO, the generation process involves a large
variety in objects (e.g., pose, shape, and location), backgrounds, and scenery settings. Thus,
it is much easier for these approaches to only produce text-semantic-matched appearances
instead of capturing difficult geometric structure. As shown in Fig. 1, current approaches are
only capable of producing required appearances semantically matching the given descriptions
(e.g., white and black stripes for zebra), but objects are unrealistic with distorted shape.
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A zebra is
standing on the

grassy field.

A white and blue
bus is driving
down a street.

Given Text StackGAN++ [51] AttnGAN [49] DF-GAN [46] Ours
Figure 1: Examples of text-to-image generation on COCO. Current approaches only generate
low-quality images with unrealistic objects. In contrast, our method can produce realistic
images, in terms of both visual appearances and geometric structure.

Furthermore, these approaches are in contrast to earlier works on image synthesis, which
were based on non-parametric techniques that could make use of large datasets of images at
inference time [3, 9, 14, 18, 55]. Although parametric approaches can enable the benefits
of end-to-end training of highly expressive models, they lose the strength of earlier non-
parametric techniques, as they fail to make use of large datasets of images at inference time.

In this paper, we introduce a memory-driven semi-parametric approach to text-to-image
generation, where the approach takes the advantages of both parametric and non-parametric
techniques. The non-parametric component is a memory bank of disentangled image features
constructed from a training set of real images. The parametric component is a generative
adversarial network. Given a text description at inference time, the memory bank is used to
selectively retrieve compatible image features that are provided as basic information, allowing
the generator to directly draw clues of target images, and to produce realistic synthetic results.

Besides, to further improve the differentiation ability of the discriminator, we incorporate
content information into it. This is because, to make a prediction, the discriminator usually
relies on semantic features, extracted from a given image using a series of convolution
operators with local receptive fields. However, when the discriminator goes deeper, less
content details are preserved, including exact geometric structure information [6, 15]. We
think that the loss of content details is likely one of the reasons why current approaches fail to
produce realistic shapes for objects on difficult datasets, such as COCO. Thus, the adoption
of content information allows the model to exploit the capability of content details and then
improve the discriminator to make the final prediction more reliable.

Finally, an extensive experimental analysis is performed, which demonstrates that our pro-
posed semi-parametric method can generate realistic images from natural language, compared
to purely parametric models, in terms of both visual appearances and geometric structure.

2 Related Work
Text-to-image generation has made much progress because of the success of generative
adversarial networks (GANs) [8] in realistic image generation. Zhang et al. [50] proposed
a multi-stage architecture to generate realistic images progressively. Then, attention-based
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methods [22, 49] are proposed to further improve the results. Zhu et al. [56] introduced a
dynamic memory module to refine image contents. Besides, extra information is adopted on
the text-to-image generation process, such as scene graphs [2, 16] and layout (e.g., bounding
boxes or segmentation masks) [12, 13, 27]. However, none of the above approaches adopt
non-parametric techniques to make use of large datasets of images at inference time, neither
feed content information into the discriminator to enable a finer training feedback. Also, our
method does not utilize any additional semantic information, e.g., scene graphs and layout.
Text-guided image manipulation is related to our work, where the task also takes natural
language descriptions and real images as inputs, but it aims to modify the images using given
texts to achieve semantic consistency [5, 23, 25, 34]. Differently from it, our work focuses
mainly on generating novel images, instead of editing some attributes of the given images.
Also, the real images in the text-guided image manipulation task behave as a condition, where
the synthetic results should reconstruct all text-irrelevant attributes from the given real images.
Differently, the real images in our work are mainly to provide the generator with additional
cues of target images, in order to ease the whole generation process.
Memory bank. Qi et al. [38] introduced a semi-parametric approach to realistic image
generation from semantic layouts. Li et al. [20] used real image features asimage prior to
provide clues of target images in image generation. Li et al. [28] used the stored image crops
to determine the appearance of objects. Tseng et al. [47] used a differentiable retrieval process
to select mutually compatible image patches. Differently, instead of using a concise semantic
representation (a scene graph as input), which is less user-friendly and has limited context
of general descriptions, we use natural language descriptions as input. Also, Li et al. [29]
designed a memory structure to parse the textual content. Differently, our method simply uses
a deep network to extract image features, instead of involving complex image preprocessing
to build a memory bank.

3 Overview
Given a sentence S, we aim to generate a fake image I′, which is semantically aligned with S.
Our proposed semi-parametric approach is trained on sets of paired text description and
real image features v, denoted by (S,v), where image features are extracted by a pretrained
VGG-16 network [45] from real images. These sets are also used to build a memory bank M,
so each element in M is an image feature extracted from a training image, associated with
corresponding semantically-matched text descriptions from the training datasets.

At inference time, we are given a novel text description S that was not seen during
training. Then, S is used to retrieve semantically-aligned image features from the memory
bank M, based on designed matching algorithms (more details are shown in Section 3.2).
Next, the retrieved image features v, together with word embeddings w, which are encoded
from the given text description S, are fed into the generator to synthesize an output image (see
Fig. 2). During the generation process, the generator can further selectively choose semantic
information from disentangled image features vD, and fuses them with hidden features to
generate realistic images semantically-aligned with S.

3.1 Memory Bank Representation
The memory bank M contains a set of image features v extracted from training images, and
each image feature v is associated with several matched text descriptions that are provided
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Figure 2: Left: architecture of our proposed method. The red box indicates the inference
pipeline that retrieves image features from a memory bank according to the a given descrip-
tion S; during training, we directly feed image features from the text-paired training image. z
is a random vector drawn from the Gaussian distribution. Right: architecture of the proposed
discriminator with the incorporation of content information.

in the dataset, e.g., in COCO, each image has five matched text descriptions. We also store
these matched texts in the memory bank, which are used in text-image matching algorithms,
allowing a given unseen text to better retrieve image features at inference time.

3.2 Retrieval

Given a new text description S, to retrieve the most compatible image features from the
memory bank M, we design several matching algorithms and also explored the effectiveness
of each algorithm. Basically, our retrieval algorithms are based on the calculation of similarity
between text features extracted from the given text description and stored text and image
features in the memory bank. We explore three different ways to calculate the similarity: (1)
matching between the given text and stored texts, (2) matching between the given text and
stored image features, and (3) matching between the given text and stored text and image
features. In each way, we also explore the effectiveness of different levels of information,
where text includes sentence and word levels, and image includes global and regional levels.
A detailed description and comparison between algorithms is shown in the supplementary.

4 Memory-Driven Generative Adversarial Networks

To generate high-quality synthetic images from natural language descriptions, we propose to
incorporate image features v, along with the given sentence S, into the generator.

4.1 Generator with Image Features

To avoid the identity mapping and also to make full use of image features v in the generator, we
first average v on each channel to filter potential content details (e.g., overall spatial structure)
contained in v, getting a global image feature vG, where vG only keeps basic information of
the corresponding real image I, serving as basic image priors. By doing this, the model can
effectively avoid copying and pasting from I, and greatly ensure the diversity of output results,
especially on the first stage. This is because the following stages focus more on refining basic
images produced by the first stage, according to adding more details and improving their
resolution, shown in Fig. 2.
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However, only feeding the global image feature vG at the beginning of the network, the
model may fail to fully utilize the cues contained in the image features v. Thus, we further
incorporate the image features v at each stage of the network. The reason to feed image
features v rather than the global feature vG at the following stages is that v contains more
information about the desired output image, such as image contents and geometric structure
of objects, where these details can work as candidate information for the main generation
pipeline to select. To enable this regional selection effect, we adopt the text-image affine
combination module (ACM) [23], which can selectively fuse text-required image information
within v into the hidden features h, where h is generated from the given text description S.
Why does the generator with image features work better? Ideally, the generator produces
a sample, e.g., an image, from a latent code, and the distribution of these samples should be
indistinguishable from the training distribution, where the training distribution is actually
drawn from the real samples in the training dataset. Based on this, incorporating image
features from real images in the training dataset into the generator allows the generator to
directly draw cues of the desired distribution that it eventually needs to generate. Besides, the
global feature vG and disentangled image features vD can provide basic information of target
results in advance, and also work as candidate information, allowing the model to selectively
choose text-required information without generating it by the model itself, and thus easing the
whole generation process. To some extent, the global feature vG can be seen as the meta-data
of target images, which may contain information about what kinds of objects to generate, e.g.,
zebra or bus, and vD is able to provides basic information of objects, e.g., the spatial structure
like four legs and one head for the zebra, and the rectangle shape for the bus.

4.2 Discriminator with Content Information
To further improve the discriminator to make a more reliable prediction, relative to both visual
appearances and geometric structure, we propose to incorporate content information into it.
This is because, in a deep convolutional neural network, when the network goes deeper, the
less content details are preserved, including the exact shape of objects [6, 15]. We think the
loss of content details may prevent the discriminator to provide fine-grained shape-quality-
feedback to the generator, which may cause the difficulty for the generator to produce realistic
geometric structure. Also, Zhou et al. [54] showed that the empirical receptive field of a deep
convolutional neural network is much smaller than the theoretical one especially on deep
layers. So, using convolution operators with a local receptive field only, the network may fail
to capture the spatial structure of objects when the size of objects exceeds the receptive field.

To incorporate content details, we propose to generate a series of image content features,
{a128,a64,a32, . . . ,a4}, by aggregating different image regions via applying pooling operators
on the given real or fake features. The size of these content features is from a128 ∈RC×128×128

to a4 ∈ RC×4×4, where C represents the number of channels, and the width and the height of
the next image content features are 1/2 the previous one. Thus, the given image is pooled into
representations for different regions, from fine- (a128) to coarse-scale (a4), which can preserve
content information of different subregions, such as the spatial structure of objects. Then,
these features are concatenated with the corresponding hidden features on the channel-wise
direction, incorporating content information into the discriminator.

The number of different-scale content features can be modified, which is dependent on
the size of given images. These features aggregate different image subregions by repetitively
adopting fixed-size pooling kernels with a small stride. Thus, these content features maintain
a reasonable small gap for image information. For the type of pooling operation between max
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and average, we perform comparison studies to show the difference in Section 5.2.
Why does the discriminator with content information work better? Basically, the dis-
criminator in a GAN is simply a classifier [8]. It tries to distinguish real data from the
data created by the generator (note that in our method, we implement the minmax loss in
the loss function, instead of the Wasserstein loss [1]). Also, the implementation of content
information has shown its great effectiveness on classification [10, 19, 32, 37] and semantic
segmentation [31, 53]. Based on this, incorporating content information into the discriminator
is helpful, allowing the discriminator to make a reliable prediction on complex datasets,
especially for datasets with complex image scenery settings, such as COCO.

4.3 Training
There are three stages in the model, and each stage has a generator network and a discriminator
network. The generator and discriminator are trained alternatively by minimizing the generator
loss LG and discriminator loss LD.

4.3.1 Generator Objective

The generator objective for training a generator at stage i contains an unconditional adversarial
loss, a conditional adversarial loss, and a text-image matching loss LDAMSM [49].

LGi =−1
2

Ez∼Pz,v∼Pdata [log(Di(Gi(z,S,v)))]︸ ︷︷ ︸
unconditional adversarial loss

−1
2

Ez∼Pz,v∼Pdata [log(Di(Gi(z,S,v),S))]︸ ︷︷ ︸
conditional adversarial loss

+λLDAMSM,
(1)

where Gi and Di represent the corresponding generator network and discriminator network at
stage i, respectively, S is the text description, v is the image features that are extracted from
the corresponding real image I that correctly semantically matches S, where I is sampled
from the true distribution Pdata, z is a noise vector drawn from the Gaussian distribution Pz.

Thus, the complete objective function for training the generator networks is:

LG =
K

∑
k=1

(LGi), (2)

where K is the total number of stages in the network.

4.3.2 Discriminator Objective

The discriminator objective for training a discriminator at stage i contains an unconditional
adversarial loss and a conditional adversarial loss:

LDi =−1
2

EIi∼Pdata [log(Di(Ii))]−
1
2

Ez∼Pz [log(1−Di(Gi(z,S,v)))]︸ ︷︷ ︸
unconditional adversarial loss

−1
2

EIi∼Pdata [log(Di(Ii,S))]−
1
2

Ez∼Pz [log(1−Di(Gi(z,S,v),S))]︸ ︷︷ ︸
conditional adversarial loss

,
(3)
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where Ii denotes the real image sampled from the true image distribution Pdata at stage i. Thus,
the complete objective function for training the discriminator networks is:

LD =
K

∑
k=1

(LDi)+R1(ψ), (4)

where R1(ψ) is a regularization term described in the paper. This regularization term is
derived from zero-centered gradient penalties [43] on local stability, which penalizes the
discriminator for deviating from the Nash equilibrium. This ensures that when a GAN-based
model converges (i.e., the generator produces the true data distribution), the discriminator
cannot create a non-zero gradient orthogonal to the data manifold without suffering a loss in
the GAN game.

5 Experiments
To verify the effectiveness of our proposed method in realistic image generation from text
descriptions, we conducted extensive experiments on the CUB bird [48] and the more complex
COCO [30] dataset, where COCO contains multiple objects with diverse backgrounds.
Evaluation metrics. We adopt the Fréchet inception distance (FID) [11] as the primary
metric to quantitatively evaluate the image quality and diversity. Since (compared to the
Inception score (IS) [44]) FID is more consistent with human evaluation [12], we also provide
IS as a supplementary result. In our experiments, we use 30k synthetic images vs. 30k
real test images to calculate the FID and IS values. However, as FID cannot reflect the
relevance between an image and a text description, we use the R-precision [49] to measure
the correlation between a generated image and its corresponding text. Following [12], we also
report SOA-C (i.e., the percentage of images per class in which a desired object is detected)
and SOA-I (i.e., the percentage of images in which a desired object is detected).
Implementation. There are three stages in the model, and each stage has a generator network
and a discriminator network. The number of stages can be modified, which depends on the
resolution of the output image. We utilize a deep neural network layer relu5_3 of a pre-trained
VGG-16 to extract image features v, which is able to filter content details in I and keep
more semantic information. In the discriminator, the number of different-scale image content
features can be modified, which is related to the size of the given image. A same-size pooling
kernel with a small stride (stride = 2) is repeatedly implemented on the image features, to
maximize the preservation of the content information. As for the type of pooling operation,
average pooling is adopted. The resolution of synthetic results is 256×256. Our method and
its variants are trained on a single Quadro RTX 6000 GPU, using the Adam optimizer [17]
with the learning rate 0.0002. We preprocess datasets according to the method used in [49].
No attention module is implemented in the whole architecture.

5.1 Comparison with Other Approaches
Quantitative comparison. The results are shown in Table 1. Compared to pure parametric
approaches with a similar architecture, our method achieves competitive FID and R-precision
scores on both datasets, and even has a better performance than OP-GAN, where OP-GAN
adopts bounding boxes. This indicates that (1) our method can produce realistic images
from given text descriptions, in terms of image quality and diversity, and (2) synthetic results
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Table 1: Quantitative comparison: IS, FID, R-precision, SOA-C, and SOA-I of current
methods and our approach on the CUB and COCO datasets. CP-GAN, Obj-GAN, and
OP-GAN adopt additional bounding boxes in their methods.

CUB COCO

Method IS FID score R-precison IS FID score R-precison SOA-C SOA-I

Real Images 25.34 - 89.17 34.88 - 92.71 74.97 80.84

AttnGAN [49] 4.36 23.98 67.82 25.89 32.32 85.47 25.88 39.01
ControlGAN [22] 4.58 13.92 69.33 24.06 33.58 72.43 - -
MirrorGAN [40] 4.56 - 57.67 26.47 - 74.52 - -
DM-GAN [56] 4.75 16.09 72.31 32.32 32.64 88.56 33.44 48.03
DF-GAN [46] 5.10 14.81 - - 21.42 - - -
XMC-GAN [52] - - - 30.45 9.33 - 50.94 71.33
LAFITE 5.97 10.48 - 32.34 8.12 - 61.09 74.78

DALL-E [42] - - - - ∼20 - - -
GLIDE [35] - - - - 12.89 - - -
CP-GAN [29] - - - 52.73 55.82 93.59 77.02 84.55
Obj-GAN [27] - - - 30.29 36.52 87.84 27.14 41.24
OP-GAN [12] - - - 27.88 24.70 89.01 35.85 50.47

Ours 5.91 10.49 73.87 29.36 19.47 90.32 47.46 65.83

produced by our method are semantically aligned with the given text descriptions. Compared
to the large-scale CLIP-based [41] method LAFITE and GLIDE, transformer-based method
DALLE, and contrastive-learning-based XMC-GAN, our approach achieves a competitive
performance on CUB bird and COCO, reflected by the scores on different evaluation metrics.
Although CP-GAN achieves higher IS and SOA scores, both our FID and visual inspection
of randomly selected images indicate that our image quality is much higher than CP-GAN’s.
This may be due to the issue that IS and SOA do not penalize intra-class mode dropping (low
diversity within a class) — a model that generates one “perfect” sample for each class can
achieve good scores on IS and SOA [12, 27, 52].

Qualitative comparison. In Fig. 3, we present synthetic examples produced by our method
at 256×256, along with the corresponding retrieved images that provide image features. As
we can see, our method can produce high-quality results on CUB and COCO, with respect to
realistic appearances and geometric structure, and also semantically matching the given text
descriptions. Besides, the synthetic results are different from the retrieved image features,
which indicates that there is no significant copy-and-paste problem in our method.

A yellow and 
green train is 

traveling through 
a station.

A red double 
decker bus driving 

down a street.

A yellow bird has 
brown wings, and 

a yellow belly.

Figure 5: Diversity. The top row shows the
fixed sentence and image features, where we
use the corresponding images to represent im-
age features for a better visualization. The
bottom presents diverse synthetic images pro-
duced by only changing the input noise z.

Diversity evaluation. To further evaluate
the diversity of our method, we fix the given
text description and the corresponding re-
trieved image features, and only change the
given noise z to generate output images,
shown in Fig. 5. When we fix the sen-
tence and image features and only change
the noise, our method can generate obvi-
ously different images, but they still seman-
tically match the given sentence and also
make use of information from the image fea-
tures. More evaluations are shown in the
supplementary material.
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A brown cat 
is lying on 

some carpet. 

A stop sign 
on a wooden 
pole in front 

of trees.

A yellow and 
green train is 

traveling 
through a 
station.

Retrieved Image  
Features

A pizza with 
cheese and 
green herbs 

on it.

A red double 
decker bus 

driving down a 
street.

Synthetic  
Results

Given Sentence A clock that 
is on the side 

of a tower.

The room has 
a lamp and a 

bed with 
white sheets 

on it.

A zebra 
walking in an 
open grassy 

field.

This bird has 
a short beak, 
with a blue 
head, and a 
white belly.

A yellow bird 
has brown 

wings, and a 
yellow belly.

Figure 3: Qualitative results on CUB and COCO: in the top row is the given sentences; middle
row: the image features extracted from the memory bank M (we use corresponding images to
represent the image features for a better visualization); bottom row: the synthetic results.

Given Text

DF-GAN

AttnGAN

Ours

A red and 
yellow double 
decker bus on 
the side on the 

road.

A clock is 
shown on the 

top of a 
building.

A giraffe 
walks through 

the grass of 
an open field.

A table with a 
vase and 

flowers come 
out of it.

A baseball 
batter swing 
a bat over 

home plate.

A red train is 
sitting at a 

train station.

An open laptop 
computer 

sitting on top 
of a table.

A small 
bathroom 

with a white 
toilet with 
the seat up.

Figure 4: Qualitative comparison between AttnGAN [49], DF-GAN [46], and Ours on COCO.
A zebra is walking 
in an open grassy 

filed.
A zebra is grazing 

on green grass.
A bus is driving 
down a street.

A bus is parking on 
the side of the road.

Image Features

Synthetic Results

Given Sentence

Figure 6: Semantic information exploration.
Top row: given sentences; middle row: im-
age features, represented by the corresponding
segmentation masks for a better visualization;
bottom row: synthetic images.

Semantic information exploration. Here,
we further verify whether our method suffers
from a copy-and-paste problem, according
to explore whether our method can make
use of semantic information contained in
the retrieved image features. To verify this,
instead of extracting image features from
RGB images, we use segmentation masks to
provide semantic image features, shown in
Fig. 6. As we can see, although there is no
content information provided in the given
segmentation masks, our method is still able
to generate realistic images, which indicates that our method can make use of semantic
information contained in the image features, instead of simply copying and pasting the
retrieved image features to produce output images.

5.2 Component Analysis
Effectiveness of the image features. To understand the effectiveness of image features in the
generator, we conduct an ablation study, shown in Table 2. Without image features, the model
“Ours w/o Feature” achieves worse quantitative results on both FID and R-precision compared
with the baseline, which verifies their effectiveness on high-quality image generation.
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Table 2: Ablation studies: “Ours w/o Fea-
ture” denotes without feeding image features
into the generator, “Ours w/o Disen.” de-
notes without using the fully connected lay-
ers to disentangle image features v, “Ours
w/o Disen.*” is for mismatched pairs, “Ours
w/o Content” denotes without incorporating
content information into the discriminator,
“Ours w/o Reg.” denotes without using the
regularization in the discriminator, “Ours w/
Max” denotes using maximum pooling to ex-
tract content information, and “Ours w/ Aver”
denotes using average pooling.

Method FID R-psr

Ours w/o Feature 22.20 84.63
Ours w/o Disen. 18.82 92.17
Ours w/o Disen.* 18.80 67.05
Ours w/o Content 20.96 88.95
Ours w/o Reg. 27.12 82.97

Ours w/ Max 26.12 83.11
Ours w/ Aver (Full Model) 19.47 90.32

Interestingly, without image features, even
our method becomes a pure text-to-image gen-
eration method, similar to other baselines, but
the FID of “Ours w/o Feature” is still compet-
itive with other baselines. This indicate that
even without the image features fed into our
method, our method can still generate better
synthetic results, with respect to image qual-
ity and diversity. We think that this is mainly
because with the help of content information,
our better discriminator is able to make a more
reliable prediction on complex datasets, which
in turn encourages the generator to produce
better synthetic images.
Effectiveness of the disentanglement. Here,
we show the effectiveness of the fully con-
nected layers applied on the image features v.
Interestingly, from Table 2, the “model w/o
Disen.” achieves better FID and R-precision
compared with the baseline. This is likely be-
cause the model may suffer from an identity
mapping problem. To verify this identity map-
ping problem, we conduct another experiment, where we feed the mismatched sentence and
image pairs into the network without using search algorithms, denoted “model w/o Disen.*”.
As we can see, on mismatched pairs, although FID is still low, the R-precision degrades.
Content information. In Table 2, FID and R-precision degrade when the discriminator does
not adopt the content information. This may indicate that content information can effectively
strengthen the differentiation abilities of the discriminator. Then, the improved discriminator
can provide the generator with fine-grained training feedback, regarding geometric structure,
thus facilitating training a better generator to produce higher-quality synthetic results.
Comparison between different pooling types. In Table 2, as we can see, the model with
average pooling works better than max pooling. We think that this is likely because max
pooling fails to capture contextual information between neighboring pixels, because it only
picks the maximum value among a region of pixels, while average pooling calculates the
average value between them.
Effectiveness of the regularization. From Table 2, the model without the regularization has
worse quantitative results, compared with the full model. This is because the regularization
effectively improves GAN convergence by preventing the generator from training on junk
feedback, once the discriminator cannot easily tell the difference between real and fake.

6 Conclusion
We have introduced a memory-driven semi-parametric approach to text-to-image generation,
which utilizes large datasets of images at inference time. Also, an alternative architecture is
proposed for both the generator and the discriminator. Extensive experimental results on two
datasets demonstrate the effectiveness of feeding retrieved image features into the generator
and incorporating content information into the discriminator.
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