

Memory-Driven Text-to-Image Generation

Bowen Li, Philip H.S. Torr, and Thomas Lukasiewicz

Introduction

A zebra is standing on the grassy field.

A white and blue bus is driving down a street.

Given Text

StackGAN++

DF-GAN AttnGAN

Fig. 1. Examples of text-to-image generation on COCO. Current approaches only generate lowquality images with unrealistic objects. In contrast, our method can produce realistic images, in terms of both visual appearances and geometric structure.

Method

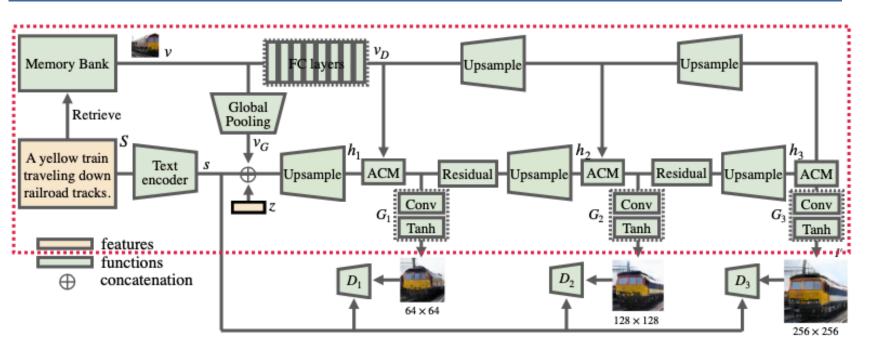
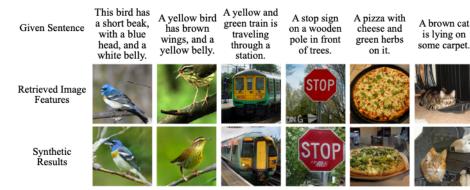



Fig. 2. Top: architecture of our proposed method. The red box indicates the inference pipeline that retrieves image features from the memory bank according to the given text description S; during training, we directly feed image features from the text-paired training image. z is a random vector drawn from the Gaussian distribution.

Experiments

methods and our approach on the CUB and COCO datasets.

	CUB			COCO				
Method	IS	FID score	R-precison	IS	FID score	R-precison	SOA-C	SOA-I
Real Images	25.34	-	89.17	34.88	-	92.71	74.97	80.84
AttnGAN [49]	4.36	23.98	67.82	25.89	32.32	85.47	25.88	39.01
ControlGAN [22]	4.58	13.92	69.33	24.06	33.58	72.43	-	-
MirrorGAN [40]	4.56	-	57.67	26.47	-	74.52	-	-
DM-GAN [56]	4.75	16.09	72.31	32.32	32.64	88.56	33.44	48.03
DF-GAN [46]	5.10	14.81	-	-	21.42	-	-	-
XMC-GAN [52]	-	-	-	30.45	9.33	-	50.94	71.33
LAFITE	5.97	10.48	-	32.34	8.12	-	61.09	74.78
DALL-E [<mark>42</mark>]	-	-	-	-	~ 20	-	-	-
GLIDE [35]	-	-	-	-	12.89	-	-	-
CP-GAN [29]	-	-	-	52.73	55.82	93.59	77.02	84.55
Obj-GAN [27]	-	-	-	30.29	36.52	87.84	27.14	41.24
OP-GAN [12]	-	-	-	27.88	24.70	89.01	35.85	50.47
Ours	5.91	10.49	73.87	29.36	19.47	90.32	47.46	65.83

Text	An open laptop computer sitting on top of a table.	A small bathroom with a white toilet with the seat up.	A red a yellow do decker bu the side o road.
AttnGAN			
DF-GAN			
Ours			

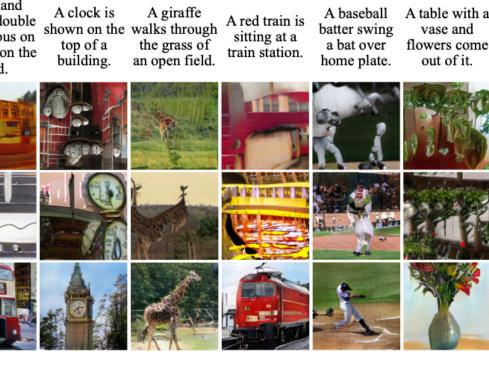

Fig. 4. Qualitative comparison between AttnGAN, DF-GAN, and Ours on COCO.

Table 1. Quantitative comparison: IS, FID, R-precision, SOA-C, and SOA-I of current

decker bus driving down a is on the side walking in ar bed with white sheets

Fig. 3. Qualitative results on CUB and COCO.

Experiments

Fig. 5. Diversity of our approach, where we only change the value of noise vector z.

Given Sentence	A zebra is grazing on green grass.	A zebra is walking in an open grassy filed.	A bus is driving down a street.	A bus is the side
Image Features				
Synthetic Results				

Fig. 6. Semantic information exploration by feeding semantic masks into our network to generate realistic images.

Table 2. Ablation studies of different components used in our approach.

Method	FID	R-psr
Ours w/o Feature	22.20	84.63
Ours w/o Disen.	18.82	92.17
Ours w/o Disen.*	18.80	67.05
Ours w/o Content	20.96	88.95
Ours w/o Reg.	27.12	82.97
Ours w/ Max	26.12	83.11
Ours w/ Aver (Full Model)	19.47	90.32

is parking on le of the road.

