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Abstract

Zero-shot domain generalization (ZSDG) simultaneously addresses the challenges
of dissimilar distribution and disjoint label-spaces of the training and test data in the
context of classification. State-of-the-art ZSDG approaches leverage multiple source do-
main data and the semantic information of the classes to learn domain-agnostic features
for handling both unseen domains and classes. Effective feature learning depends sig-
nificantly on the training data characteristics, which has been largely overlooked for this
task. In this work, we propose to handle one such important challenge, namely class-
imbalance for the ZSDG problem. Towards this end, we propose a novel framework,
Mixing-based Adaptive Margin Classifier Network (MAMC-Net) for handling this real-
world challenge. Specifically, it consists of two components, (i) a novel adaptive-margin
based semantic classifier for handling the data imbalance in the training data and (ii) a
module for determining the mixing ratio when the input domains and classes are mixed,
for better domain agnostic class-discrimination. Extensive experiments and analysis per-
formed on multiple large-scale datasets, DomainNet and DomainNet-LS demonstrate the
effectiveness of MAMC-Net to address the challenging ZSDG scenario.

1 Introduction

Recent advances in deep learning have brought significant improvements in several com-
puter vision tasks, eg. image classification [14], segmentation [32] etc., but with the under-
lying assumptions that the test data always belong to the same distribution as the training
data, and they share the same label-space. However, in real-life, the test data may belong
to any category or domain, and this information is not known a-priori. Research in the
directions of domain generalization (DG) [19][28] and zero-shot learning (ZSL) [36][40]
address these restrictions individually. DG explores the challenging scenario of classifying
data from a completely unknown target domain [22][20] (but identical label-space), by learn-
ing a domain-invariant representation, using data collected across multiple source domains.
On the other hand, ZSL-algorithms can classify objects from unseen classes (but identical
data-distribution), by addressing the knowledge-gap of the seen and unseen categories us-
ing their corresponding semantic properties. Motivated by real-world challenges, recently,
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researchers have started to address zero-shot domain generalization (ZSDG) [27][5], where
the test data can belong to an unseen class as well as unseen domain.

ZSDG leverages samples across multiple domains (as in DG) to train the model, and
quite often this results in severely imbalanced training data. For example, RGB-images may
be easier to collect as compared to drawing Sketches. Even within a single domain, it might
be much easier to collect data from few classes compared to the others. Thus the training
data can have domain as well as class imbalance. The class-imbalance problem has been
widely addressed in the context of several applications like image classification [14], object
detection [44], etc.

In this work, we address the challenges posed by class-imbalanced training data for the
ZSDG task. Towards that goal, we propose a novel framework consisting of a semantic
classifier with an adaptive margin to account for the variable number of training data of the
different classes. We integrate it with an inter-domain and inter-class mixing network with
mixing-ratio prediction ability to ensure that the feature representation is domain-agnostic.
We refer to this proposed framework as Mixing-based Adaptive Margin Classifier Network
(MAMC-Net). Thus the contributions of this work are summarized as follows: (i) We ad-
dress the real-world problem of class-imbalance for the challenging ZSDG setting, which to
the best of our knowledge is the first in literature; (ii) We propose the MAMC-Net frame-
work, where a novel class-specific adaptive margin is learnt to address the imbalance issue;
(iii) In addition, we also learn to predict the ratio of a mixed input, which helps in extracting
better domain-agnostic features to further boost the performance; (iv) The proposed frame-
work outperforms all the existing approaches and obtains state-of-the-art results on the two
large-scale benchmark datasets, DomainNet [31] and DomainNet-LS [27].

2 Related Work

Here, we discuss relevant work in the literature for DG, ZSL, ZSDG and data imbalance.
Domain Generalization (DG): Domain generalization aims to achieve domain invariant
feature representations of the data, by training the model on data from multiple domains.
In [42], a conditional invariant deep network is trained with adversarial training to obtain
the same. The work in [23] extends the adversarial learning process using auto-encoders
with Maximum Mean Discrepancy (MMD) loss. A meta-learning based approach is pro-
posed in [18] and a combination of extrinsic and intrinsic supervisions is proposed in [38].
More recently, [8] proposed to learn a domain-representation while adapting to the target
domain, and [37] introduces domain-specific batch-normalization to address DG. In [4],
a self-supervised approach for learning the input features by solving a jigsaw puzzle cre-
ated using random patches on the input image is used. [26] proposed to learn the multi-
ple latent-domains in the training data using unsupervised clustering on style-features and
cross-entropy based loss on category-features. A modified DG-protocol with single-domain
training data using adversarial domain-augmentation is explored in [33].

Zero-Shot Learning (ZSL): ZSL algorithms usually leverage the class attributes or se-
mantic information to bridge the gap between the seen and unseen classes. Such information
can be in the form of text [34], attributes [16], knowledge graph (KG) and ontology rules [24]
Several ZSL approaches [43][17] learn a mapping function from the image space to the se-
mantic space and then utilize nearest neighbour search to match the query image to one of
the class semantics. Recently, generative models have been proposed to generate synthetic
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samples of the novel classes (not present in the training) using their respective semantic vec-
tors [35][9], which are finally used to train the classification model. Using graph knowledge
as the semantic representation is another effective approach for ZSL, as presented in [39].

Zero Shot Domain Generalization (ZSDG): Recently ZSDG has become an active re-
search area, and few algorithms [27][5] have been proposed which report impressive results
for this task. In [27], an effective mixing strategy is proposed to generate new synthesized
data of unseen categories and unseen domains through inter-class and inter-domain mixing.
The state-of-the-art ZSDG approach [5] learns domain independent structure latent embed-
dings by projecting both the image and the semantic representations to a common latent
space. Usually, Word2vec [6]-embeddings have been utilized in these works.

Class Imbalance: This is a well-studied problem in the context of classification [14], object
detection [44], etc. One straight-forward approach is to perform over-sampling of minor-
ity classes [15][2], but this is usually not very effective [25]. Most of the state-of-the-art
approaches address the class imbalance problem by modifying the classifier. Towards this
end, [12] learns the classifier to maximally spread out in the embedding space. In [3], the
classifiers are learnt to obtain broader margin for minority classes compared to the others.

3 Problem Definition and Motivation

First, we introduce the different notations used and also discuss the motivation for this work.
We denote the training data as Dy = { (X, Yi, d,')}?=1, containing N-number of samples.
Here, X; represents the ith sample, from class ¥; and domain d;. The corresponding seen-
label space and the set of training-domains are represented as V¢r = {y1,..., ¥i, ... }, and
Str={d1,...,d;, ... }, respectively. The goal of ZSDG [27][5] is to classify the test sam-
ples from Dte = {Xte }, where the test label-space Vte and domain-set Ste corresponding to
Dte are strictly non-overlapping with the training sets, ie.: Vir N Vee = ¢ and Str NSte = .
Motivation: Itis well known that training data characteristics like data imbalance adversely
affects the final performance for several tasks like image classification, object detection, etc.
and addressing them can significantly boost the results. But these factors have been largely
overlooked in tasks like ZSDG. Analyzing the large-scale benchmark dataset for DG and
ZSDG, namely DomainNet [31], we observe from Figure 1 (a,b), that significant class imbal-
ance exists across multiple domains, which justifies the effort to address the class-imbalance
problem for the ZSDG task. In Figure 1 (c), we observe from the t-SNE plot that the samples
from the 5-majority (spreadsheet, table, tree, whale and bird) and 5-minority (dresser, calen-
der, ceiling-fan, saw and line) classes cluster in the feature-space, justifying the effectiveness
of the proposed MAMC-Net. Next, we discuss the proposed framework.

4 Mixing-based Adaptive Margin Classifier Network

The proposed MAMC-Net constitutes two main modules, namely (i) Domain-Agnostic Rep-
resentation Module and (ii) Class-Imbalance Handling Module, on top of a base model. The
base model can potentially be any semantic-classifier based existing ZSDG network. We
demonstrate that the integration of the two proposed modules with one such base model
enhances its performance, by addressing the class-imbalance in the training set. Here, we
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Figure 1: Severe class imbalance is observed from the data distribution of (a) Infograph
domain; (b) all the source domains combined for DomainNet dataset. (c) t-SNE plot of the
MAMC-Net feature space for 5 majority and 5 minority training classes.

consider CuMix [27] to be the base model, which we briefly describe below.

Base Model: Our base network, CuMix [27], is an inter-domain and intra-domain mix-
ing based network, and the first to address ZSDG. It consists of a mixing module M, a
feature-extractor F and a classifier C. The mixing in this network is performed on a triplet
set T = {Xi, Xj, Xk }, such that the sample-pair {X;, X;} are from different domains (inter-
domain samples), and {X;, Xk } are from same domain (intra-domain samples), but belonging
to different categories (inter-class samples). Thus, the mixed sample is

Xmixed = M(Xi, Xj, Xk, 8) = 6Xi+ (1 —6)[ Exj+ (1 — E)x«] (1)

where, 6 is the mixing co-efficient and & is sampled from Binomial distribution, generating
Xmixed as either a cross-domain sample (for § = 1), or a cross-category sample (§ = 0).
The rest of the components of the network F and C are learned using X mixed-

The classifier module C in CuMix consists of (1) a semantic projector Psem to transform
the feature-representation F(Xmixeq) to the semantic space, and (2) a set of fixed semantic
weights, Wsem = [W1,..., Wq, ..., WV | ], which is the collection of semantic informa-
tion (W¢) in the form of word-embedding of the category-names for each class y¢ € Vtr.
These weights are utilized to compute the probability that X mixeq belongs to class with la-

f .
bel yc as, prob(Xmixed € yc) = Zlei):)g(vs(’:”l S(}T(‘;‘;i))(ld)).

Yc to also denote the class with that label. The network is trained in an end-to-end manner
through minimizing a mix-up based cross-entropy loss based on these probabilities as,

Here we overload the notation

1
Lmixed—CE = —_|[5 logprob(Xmixed € i)

|7
+(1—-6)[Elogprob(Xmixed € ¥;)
+(1—8&)logprob(Xmixed € y«)1] 2)

In addition, the model also minimizes a semantic loss function Lsem, which is the cross-
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Figure 2: The proposed MAMC-Net architecture for (a) training, (b) inference.

entropy loss for the raw-samples X; € D¢ as

1
Lsem=—= > logprob(xi€yc) 3)
nYceytr

Now, we describe the proposed novel modules in MAMC-Net in details. A block diagram
of the proposed framework is shown in Figure 2.

1) Domain Agnostic Representation Module: Inspired by [30], we introduce a module G
to learn the mixing proportion of the different classes for each Xmixeqg. This will enable
the model to forget the domain specific characteristics present in X mixed, and to learn only
the features specific to the category. This serves the domain-agnostic representation learning
goal, as well as enhances the class-discriminability of the model. The corresponding loss is:

1
Ldar=—— Z Nmixed * 109(Vmixed); Vmixed = soft-max(G(Xmixed))

l | Xmixed€T @

where, Nmixed is the mixed-label information of Xmixed, computed on the basis of the one-
hot representation (1, Nj and Nk) of component classes as Nmixed = 6N+ (1 —08)[§n;+
(1—&)nk]. This loss improves the domain-invariant representation of the feature-extractor F.

2) Adaptive Margin Classifier Module: Here, we explain the novel adaptive margin
classifier, which can account for the class imbalance in the training data, while computing
discriminating class-boundaries for the training classes. The confusion for a class depends
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on its variance, and during training, the classifier learns this spread or boundary about the
class from the training data. When there is class imbalance, for minority classes, confusion
arises since adequate data for this learning is not available, and thus a larger classifier margin
tries to compensate for it. In ZSDG, though the test classes are different from the training
ones, they are classified using their relatedness to the seen ones. Thus, if the training (seen)
classes are improperly classified due to inadequate training examples in few classes or other
reasons, it will in turn adversely affect the test classification.

Several state-of-the-art class-imbalance handling techniques for applications like image
classification aim to modify the classifier [3][12]. In contrast, the classifiers (Wsem) in
ZSDG are usually fixed to the semantic representations (word-embeddings of class-names)
to account for the unseen classes that will be encountered during testing. As explained
earlier, for the minority classes, lesser number of training samples may result in increased
confusion with the neighbouring classes. To account for this, we propose to incorporate an
adaptive margin to each of the fixed semantic classifiers, with the objective that the classifiers
sampled from this margin should be able to classify samples from the corresponding class
correctly. Since the class probabilities are obtained by the cosine similarity between the
feature and the perturbed classifier, this mitigates the adverse affect of lesser number of
samples. Another advantage is that this class-specific margins can be learnt in an end-to-
end-manner. Specifically, this margin is computed as a scaled Gaussian noise, where the
scaling factor is learned during training. Specifically, the margin-factor for class Y ¢ € Vir is
defined as,

AC=)\5N(0, 1) (5)

where N'(0, 1) is a zero-mean unit-variance Gaussian noise and A¢ is the learnable scaling
factor. We initialize A¢ as per the number of samples N¢ of class Y¢ in the training set as,
Ac=(1-— r;)_c) For minority classes, Nc << N, and thus A¢ has a higher value, resulting
in a wider A¢ around the semantic embedding of the category name of y.. For majority
classes, this margin is less. Throughout the training, the weights of the proposed adap-
tive classifier W'CV’AMC for class € is randomly sampled following W'CV’AMC ~ (wc+Af).
Using this modification, we now compute the probability of X mixed to belong to class C as,

exp(WMAMC x F(Xmixed))
P(Xmixed €Yc, Ac)= <

MAMC
loss as,

nd the corr nding cross-entro
2ieye, exXp(w *]“'(Xmixed))’a ¢ corresponding cross-entropy

1
e cE= _mw 109 P(Xmixed € Yi, Ai)

+(1—=06)[E109P(Xmixed € Yj, Aj)
+(1—&) 109 P(Xmixed € Yk, Ak)]1] (6)

Now, we discuss the complete training process followed in this work.

Complete Training and Inference Methodology: For effectively training MAMC-Net,
we minimize a combination of three loss-components: (1) Mix-up based cross-entropy loss

ﬁm?xl\gg—CE with the adaptive classifier; (2) Domain agnostic representation loss Lqqr; (3)

. . . 1
Modified semantic loss (eq. (3)) given by: LMAMC — -5 Zyceytr 109 P(Xmixed € Ve, Ac).

sem
Thus, the combined loss function is given by
L= k1 LMAMC 4 k5 Laar + k3 £MAMC ©)

sem mixed—CE
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where, K1, K2 and K3 are the hyper-parameters. The model is trained end-to-end to optimize
the model components, 7, Psem, G and the margins A¢ in the adaptive classifier ngfn’\/’c
for handling class-imbalanced ZSDG task.

After training, the obtained feature extractor F can robustly classify samples from un-
seen domain(s), as well as from unseen class(es). During inference, we use the semantic
information from these unseen classes in YVte as the classifiers, i.e. the classifier for tth un-
known class is W¢, contains the semantic information in the form of the word-embeddings
of tth-class’s name. The test sample Xte € Dte is passed through the feature extractor F,

and the corresponding class is predicted as

Yte = arg max [ We * F(Xte)] ®)
teVte

Now, we will discuss the experiments performed to evaluate the proposed MAMC-Net.

S Experiments and Analysis

We experimented on two large-scale datasets, namely DomainNet [31] and DomainNet-
LS [27]. DomainNet [31] is the benchmark dataset for ZSDG [27][5] and comprises of
6-domains consisting of 345-categories in each domain. The domains are real, painting,
sketch, quickdraw, info-graph and clip-art. Following the standard ZSDG-protocol [27], we
use 300-categories for training, and the remaining for evaluation. 5-domains are used dur-
ing training, and the remaining domain is used as the unseen domain for testing. However,
image-domain is never used as an unseen target domain, as the model is pre-trained on the
ImageNet [7] data. DomainNet-LS is a modified DomainNet dataset [31], where the train-
ing and test domains are pre-defined. Here, the class-wise seen / unseen data split remains
unchanged, but only the two domains, real and painting are used for training. The remaining
4-domains are used for evaluation. This domain-split becomes more challenging due to the
presence of unseen domains, like sketch or quickdraw, for which no related training domains
are present. This dataset was first proposed in [27], and later used in [5] for ZSDG.

Baselines: Following [27], we compare MAMC-Net with several existing ZSDG methods
in literature, such as: (1) ZSDG: We provide comparison with SOTA methods, namely
CuMix [27] and SLE-Net [5]. We utilized CuMix [27] as the base network and explained it
in Section 4. SLE-Net [5] is the more recent approach for ZSDG. (2) ZSL: We report the
performance of few ZSL methods, such as DEVISE [10], ALE [1] and SPNET [41] under the
ZSDG scenario. We train these models on the training data from multiple domains, and per-
form the inference on data from an unknown domain. (3) Extending DG for ZSL: We also
experiment with standard DG methods, such as DANN [11] and EpiFCR [21], and use them
in addition with the ZSL-methods to perform classification under ZSDG protocol. Thus, the
baselines selected to benchmark the performance of MAMC-Net is quite exhaustive.

Implementation details : MAMC-Net is implemented in Pytorch [29], using a single Nvidia
RTX A5000 GPU. We use Resnet-50 [13], pre-trained on ImageNet as the backbone (same as
CuMix [27]). We report the results using standard top-1 average per-class accuracy. Follow-
ing [27], the semantic representation of the classes are the L2-normalized word-embeddings
from Google news corpus word2vec [6] model. SGD optimizer with momentum = 0.9, an
initial learning rate of 1073, with a multi-step scheduler with scale factor of 0.1 at each
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Table 1: ZSDG results on DomainNet dataset - per class accuracy (%).

Method Target Domain Avg

DG ZSL painting  inforgraph  quickdraw  sketch  clipart
DEVISE [10] 17.6 11.7 6.1 16.7 20.1 14.4
- ALE [1] 20.2 12.7 6.8 18.5 22.7 16.2
SPNet [41] 23.8 16.9 8.2 21.8 26.0 19.4
DEVISE [10] 16.4 104 7.1 15.1 20.5 139
DANN [11] ALE [1] 19.7 12.5 7.4 17.9 21.2 15.7
SPNet [41] 24.1 15.8 8.4 21.3 259 19.1
DEVISE [10] 19.3 139 73 17.2 21.6 15.9
EpiFCR [21] ALE [1] 21.4 14.1 7.8 20.9 232 17.5
SPNet [41] 24.6 16.7 9.2 232 26.4 20.0
CuMix [27] 25.5 17.8 9.9 22.6 27.6 20.7
CuMix (our implementation) 25.2 17.1 93 22.1 26.5 20.0
SLE-Net [5] (SOTA) 26.6 18.4 11.5 25.2 27.8 21.9
MAMC-Net (Ours) 27.3 19.5 12.1 26.0 28.8 22.7

Table 2: ZSDG results on DomainNet dataset - top-1 standard accuracy (%).

Method Target Domain Avg
painting  inforgraph  quickdraw  sketch  clipart

CuMix [27] 27.6 16.3 9.7 259 27.8 21.5

SLE-Net [5] (SOTA) 28.8 17.6 11.5 26.3 29.1 227

MAMC-Net (Ours) 29.2 18.8 12.2 274 30.0 23.5

Table 3: ZSDG results on DomainNet-LS dataset.

Method Target Domain Avg.
quickdraw  sketch  inforgraph  clipart

SPNet [41] 4.8 17.3 14.1 21.5 144

Epi-FCR [21] + SPNet [41] 5.6 18.7 14.9 22.5 154

CuMix [27] 5.5 19.7 17.1 23.7 16.5

SLE-Net [5] (SOTA) 72 20.5 16 24 16.9

MAMC-Net (Ours) 8.2 21.2 17.6 23.6 17.7

scheduling step is used for learning, on a batch-size of 100. The mixing ratio é in our ex-
periments are sampled from a beta-distribution (m, n), where m = n, and m is changed
at regular intervals to ensure fair contribution for all component samples. All the hyper-
parameters k1 = kp = k3 = 1, since the starting values for all three loss components in
eqn. 7 are in comparable range. The average accuracy results over 10 trials for each target
domain are reported in this work.

Results on DomainNet dataset: We summarize the ZSDG results on DomainNet in Table 1
in terms of per-class accuracy. The results for other algorithms are directly taken from [5].
We also include results of CuMix using our implementation (since this is our base network),
which is similar to the reported ones [27], except for clipart. We observe that the perfor-
mance of the ZSL-methods decrease when fused with DG method DANN [11] for almost all
target domains, while EpiFCR [21] improves the ZSL methods marginally. These results in-
dicate the need for developing dedicated methods to generalize across classes and domains.
This is evident from the performance of CuMix and SLE-Net, which perform much better
compared to the previous ones. However, MAMC-Net outperforms all these methods by a
significant margin. Even in terms of top-1 standard accuracy, MAMC-Net outperforms both
CuMix and SLE-Net as observed in Table 2. This clearly justifies the effectiveness of the
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Table 4: Ablation study of proposed MAMC-Net on DomainNet.

Model Variants quickdraw  painting
Base Model 9.2 25.2
Base model + Lgar 10.5 26.4
Base model + Lgar + Lfix—margin 11.1 26.3
MAMC-Net 12.1 27.3

Test samples

e - « (&Pl

True class
(Target Domain)

Figure 3: MAMC-Net predictions for few test samples from DomainNet dataset.

proposed method for ZSDG task. We also present sample prediction results on this dataset
using MAMC-Net in Figure 3. The correct and incorrect predictions are highlighted with
green and blue, respectively. We observe that most of the incorrect predictions are semanti-
cally related to the query images (eg. bread is classified as cake, blackberry is classified as
grapes). This indicates MAMC-Net’s effectiveness to fuse the semantic relevance between
categories while learning the feature-space.

Results on DomainNet-LS dataset: The results for DomainNet-LS dataset are reported
in Table 3. The performance of the ZSL method, SPNet on the four targets, and its per-
formance when combined with the DG-method Epi-FCR shows that this fusion provides
marginal improvement for ZSDG task. In comparison, the ZSDG methods perform much
better. However, the proposed MAMC-Net outperforms all the other ZSDG methods, CuMix
and SLE-Net by a significant margin.

Ablation Study: We perform an ablation study for MAMC-Net (Table 4) to understand
the effectiveness of each component. We perform this study on DomainNet, with Quick-
draw (ambigous and roughly drawn sketches, thus difficult to predict) and Painting (visu-
ally similar to RGB, thus easily predictable domain) as the target domains, which create
robust test-conditions for the model. We perform experiments with different variations of
the model, such as: (1) Base Model: gives the results of our base network CuMix [27];
(2) Base model + Lgqr: Here we use only the domain-agnostic loss with the fixed seman-
tic classifier Wsem; (3) Base model + Ldar+ Lfix—margin: Here, we use a fixed mar-
gin (Ac=(1— %)/\/’ (0, 1)) based classifier, instead of a learnable one; (4) MAMC-Net:
This includes all the proposed modules. We observe that Lqqr provides a significant boost
to the base network, and the fix-margin classifier further improves the results (specially for
quickdraw), justifying such margin-based classifier design. MAMC-Net outperforms all the
other model-variants. Thus each of the proposed modules contributes to the good perfor-
mance of the proposed framework.
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6 Conclusion

In this work, we proposed a novel framework, MAMC-Net for handling the class imbalance
problem in the context of zero-shot domain generalization. In addition to a domain-agnostic
representation learning loss, we also introduced a novel learnable margin to the existing se-
mantic classifier of a base ZSDG-network. We also presented extensive experiments and
analysis across two large-scale datasets to demonstrate the effectiveness of this method.
Here, we have addressed the class-imbalance in the training data, which can be extended
for handling domain imbalance, resulting in further improvement in the ZSDG performance.
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