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Abstract

Vision Transformer (ViT) variants have demonstrated state-of-the-art performances
in plenty of computer vision benchmarks, including crowd counting. Although Trans-
former based models have shown breakthroughs in crowd counting, existing methods
have some limitations. Global embeddings extracted from ViTs do not encapsulate fine-
grained local features and, thus, are prone to errors in crowded scenes with diverse hu-
man scales and densities. In this paper, we propose LoViTCrowd with the argument that:
LOcal features with spatial information from relevant regions via the attention mech-
anism of ViT can effectively reduce the crowd counting error. To this end, we divide
each image into a cell grid. Considering patches of 3 × 3 cells, in which the main parts
of the human body are encapsulated, the surrounding cells provide meaningful cues for
crowd estimation. ViT is adapted on each patch to employ the attention mechanism
across the 3 × 3 cells to count the number of people in the central cell. The number
of people in the image is obtained by summing up the counts of its non-overlapping
cells. Extensive experiments on four public datasets of sparse and dense scenes, i.e.,
Mall, ShanghaiTech Part A, ShanghaiTech Part B, and UCF-QNRF, demonstrate our
method’s state-of-the-art performance. Compared to TransCrowd, LoViTCrowd reduces
the root mean square errors (RMSE) and the mean absolute errors (MAE) by an average
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of 14.2% and 9.7%, respectively. The source is available at https://github.com/
nguyen1312/LoViTCrowd.

1 Introduction
Transformers [34] are famous for their state-of-the-art performance on many natural lan-
guage processing tasks. For the last two years, it has been adapted to computer vision do-
mains and achieved superiority over convolutional neural networks (CNNs) when trained on
large-scale datasets. Vision Transformer (ViT) and its variants, without using any convolu-
tional layer, demonstrate outstanding performance in image classification [10]. [10][24][8]
have shown that Transformer-based models can learn the discriminative features between
distinct image patches more effectively than CNNs. To the best of our knowledge, Tran-

Figure 1: Despite the same number of peo-
ple, the human scales and crowd densities
are different between two cases.

Figure 2: LoViTCrowd estimates the number
of people in each patch of the whole image.

sCrowd [21] is the first work to employ ViT for crowd counting. The image is permuted
into flattened 2D patches, which are fed to Transformer encoders for the global context fea-
ture. It comes with a regression head to estimate the total number of people using this global
context feature. TransCrowd employs the attention mechanism and learns the global context
feature as the patches interact. We argue that the correlation across the image patches does
not contribute to the crowd counting performance. Each person only takes up a small area in
the patch; thus, other patches bring no relevant spatial information to the current patch. Be-
sides, TransCrowd captures the global context from too large regions of the images (Fig. 1),

Figure 3: In dense view, because people are captured by large-scale cameras, most human
heads are small. Considering the central 32 × 32 cells (red bounding boxes), they are usually
fully encapsulated. In sparse scenarios, people are often captured by close-range cameras.
The majority of human heads in the regions of interest span several cells.
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which might contain unnecessary information. Therefore, it does not consistently focus on
the crowd regions and is sensitive to errors under the circumstances of varied crowd densities
and human scales.

In this paper, we consider the above limitations to propose LoVitCrowd. We divide an
image into small patches of fixed size (e.g., 32 × 32 pixels) as shown in Fig. 2, ensuring each
patch still captures the visual properties corresponding to the scene condition of the whole
image. Each cell can contain one or more heads depending on the camera perspective (Fig.
3). The surrounding cells in a patch, which capture other main parts of a human body, provide
contextual information to estimate the number of people in the central cell. Cells from other
patches are irrelevant to the central cell, thus, are left unconsidered. Instead of using image-
level tokens, we utilize patch-level representation, which was efficiently adopted for dense
prediction tasks, i.e., object detection [2], object segmentation [36], and crowd counting.
Our contributions are summarized as follows:

(1) We present a patch-based approach for crowd counting. Each sample is a patch
comprised of 9 32 × 32 pixels cell, annotated by the respective human count of the central
cell.

(2) Instead of flattening raw image patches, we marry CNN and ViT to construct the
proposed LoViTCrowd that estimates the people in the central cell from the global context
of the patch within which it resides.

The proposed LoViTCrowd achieves state-of-the-art results on four public datasets, i.e.,
Mall, ShangHai Tech Part A, ShangHai Tech Part B, and UCF-QNRF. We also conducted
an extensive set of ablation experiments to provide insights into several configurations of
LoViTCrowd, including cross-domain evaluation, training volume and resolution variations,
and the permutation importance of the adjacent cells.

2 Related works
In the early literature, detection-based approaches [19][9][11][33], even related approaches
using recent state-of-the-art detectors, i.e., Faster R-CNN [28], YOLO [27], RetinaNet [22],
etc., seemed to perform poorly in high-density crowds with heavy occlusion. Regression-
based methods were introduced to improve the counting performance. Several methods
[4][3][16] extracted the low-level features of the scene for counting regression. They are
likely to produce unsatisfactory results.

CNN based methods can handle scene adaptation and scale diversity issues. Related ap-
proaches interpret the count number directly or via density map estimation. To address the
issue of multi-scale scenes, MCNN [40], Switch-CNN [1], CAN [23] incorporated multi-
size filters to extract multi-scale features. [29] introduced a single-branch CNN that learns
two tasks simultaneously, i.e., counting classification and density map regression. [37] in-
corporated CNN with long-short-term memory (LSTM) [15] to capture spatial-temporal in-
formation for crowd counting. CSRNet [20] adapted dilated convolutional layers to improve
the output quality. A convolutional LSTM model [14] was introduced to interpret the peo-
ple to count in every image’s local 32 × 32 patches with the help of their eight respective
neighboring cells. The sorting network [38] was proposed for directly regressing counting
without location-level annotations. P2PNet [30] directly received point-level annotations as
its learning targets. The model MATT [18] was designed for crowd counting with a small
number of location-level annotations and a large number of count-level annotations. Con-
ventional CNNs often use a down-sampling mechanism to generate large receptive fields in
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their deeper layers, which causes a reduction in spatial resolution. Moreover, CNN based ap-
proaches use convolutional kernel’s receptive field with limited size. Therefore, they fail to
capture global context information and discard local semantic information, which is crucial
to crowd counting. If the approach’s concept is only regression, the counting performance is
often limited due to the quality of image features extracted by CNNs. Some approaches [37]
[14] try to boost the crowd counting performance by adapting the combination of CNN and
LSTM to explore the local spatial context incorporation.

Transformer [34] has been shown to be better than LSTM in terms of performance and
computational efficiency. Transformer has demonstrated revolutionary performance im-
provement in various computer vision tasks, such as image classification [10], object de-
tection [2], and object segmentation [36]. Inspired by Vision Transformer, recent works
use the Transformer for crowd counting where TransCrowd [21] is the pioneer. Given an
image, after extracting the image’s global embedding, it directly regresses the number of
people in two ways, i.e., with the proposed TransCrowd-Token and TransCrowd-GAP. An-
other work, CCTrans [32], adopts a pyramid transformer to extract multi-level feature maps
for learning targets. Both TransCrowd and CCTrans do not exploit data enrichment, while
Transformer-based methods need a large-scale dataset. Furthermore, existing approaches
output the number of people from spacious areas via global-context visual features, which is
not always effective because of the diversely specified crowd distribution in the scene.

Following the previous work [14] as mentioned above and using the power of the Trans-
former in computer vision, we formulated the task as crowd counting in every cell of the
image grid. Such framework is simple to implement but achieve comparable results, com-
pared to methods that estimate the people counting from the whole image. We developed a
Transformer-based model with a patch embedding extractor followed by a regression head
for crowd counting, named LoViTCrowd. LoViTCrowd utilizes the Transformer-encoder
from [10] to every 32 × 32 cells with its surrounding cells’ collaboration in an image grid
to capture robustness embedding for counting. This strategy enriches training data samples
spectacularly because, from an image, we can slice it into as many smaller patches, including
overlapping and non-overlapping ones.

3 Methodology

As depicted in Fig. 4, LoViTCrowd includes three modules: (1) the patch embedding mod-
ule, (2) the central patch’s features extraction module, and (3) the counting regression mod-
ule. With a 3 × 3 grid of 32 × 32 cells, our target is to count the people in the central
cell. Each 3 × 3 grid is encoded with the patch embedding module into as a sequence of 9
D-dimensional embeddings. The central patch feature extraction module consists of a stack
of Transformer-encoders. The module extracts the features of the fifth cell (the central cell)
with self-attention mechanism, leveraging spatial contextual information from its eight sur-
rounding cells. In addition, for crowded scenarios, restricting the receptive field for each
considered query 32 × 32 cell to its neighboring cells avoids learning redundant and irrel-
evant information for the task of crowd counting. We adopt skip-connection [12] from the
central patch embedding to its final layer feature to consolidate the visual context informa-
tion of its respective region. Finally, the counting regression module consists of two fully
connected layers to estimate the number of people within the central cell.
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Figure 4: The overall architecture of the proposed LoViTCrowd model.

3.1 Data pipeline

Since the 32 × 32 cells in the boundary area do not have enough eight respective adjacent
neighbors, every frame’s boundaries are padded with the image’s mean value for 32 pixels
for each size (Fig. 4). We divide each whole frame into many sub-images of size 96×96 via
a sliding window.

Given a step size s, each input image with a resolution H ×W is split into N patches as
follow:

N =

⌊
H + s−96

s

⌋
×
⌊

W + s−96
s

⌋
(1)

Smaller stride s leads to larger number of patches N. In this study, for training phase, we
choose s = 32 and s = 10. The number of training samples is Ntotal = Ns=10 +Ns=32.

3.2 Patch embedding module

CNN feature extraction. As shown in Fig. 5, given an image x ∈ R96×96×3, the patch
embedding module employs the Imagenet pretrained Resnet34 [12] to extract visual crowd
features. We obtain the output of the last Resnet34’s block, i.e, F ∈ RH×W×C (H, W , C are
the height, width, and channel size of the feature maps) and divide the feature map into nine
feature patches with the size of

√
HW
3 ×

√
HW
3 ×C. Each feature patch is flattened into vectors

x ∈ R1×D, where D = HW
9 ×C followed by a a linear projection f : xi ∈ R1×D → ei ∈ R1×D′

(D′ = 768 in our experiment settings).
Position embeddings. Like ViT, we incorporate learnable position embedding into each

image token to retain positional information. This process could be formulated as: Iinput =

[e1 + p1;e2 + p2; ...;e9 + p9], where pi ∈ R1×D′
, i = 1,2, ...,9.
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3.3 Central patch’s feature extraction module

Transformer-encoder. We adopt the standard Transformer encoder with the stack of L = 12
layers as the primary feature extractor. We suppose the input sequence of the lth-th encoder
layer is Zl−1 = [Z0

l−1, ...,Z
9
l−1], where the Z0

l is the special token to learn the global context
at layer l. The main advantage of adopting the Transformer block for extraction is the multi-

Figure 5: Patch embedding module employed
the pretrained ResNet34 to capture deep visual
patch features. Figure 6: Crowd counting inference procedure.

head attention mechanism that allows the tokens to interact and determine which tokens they
should pay more attention to in the sequence. The multi-head attention mechanism is based
on scale dot-product [34] scoring scheme, allowing the tokens to interact and pay attention
to the most relevant region. The attention block is followed by a feed-forward layer with
GeLU activation function [13] and dropout [31].

Central patch’s feature extraction. In the output sequence of the final encoder block
[Z1

L,Z
2
L, ...,Z

9
L], we only consider the central patch representation Z5

L to estimate the crowd
number. The fifth patch feature at the first layer Z5

0 is added to Z5
L to obtain the central 32 ×

32 cell embedding z = Z5
0 +Z5

L. z is then fed to the two non-linear fully connected layer of
the counting regression module to estimate the number of people in the central cell.

4 Experiments

4.1 Implementation Details

We evaluate our approach across four benchmarks: ShangHaiTech (Part A/B) [39], UCF-
QNRF [17], and Mall [5][7][25][6]. Except for Mall, whose images have the same size of
640×480, other datasets have various resolutions among their data samples. Therefore, we
resize all the images in ShangHaiTech Part A/B and UCF-QNRF to the size of 1024×768.

Loss function. Euclidean distance (L2) is commonly used to train crowd counting mod-
els for its simplicity and robustness. Therefore, we choose L2 loss for calculating the error.

Training details. LoViTCrowd is implemented in PyTorch [26] and trained with a sys-
tem having a NVIDIA A100-SMX4 GPU with 40 GB of memory. We used the pretrained
ViT-B/32 provided by [10] as the backbone network for feature extraction. During training,
we used a learning rate of 1e−4. Adam optimizer was applied with default setting in beta1,
beta2, epsilon (0.9, 0.999, 1e−8, respectively) and 5e−4 in weight decay.

Counting people in the single image. As shown in Fig. 6, a padded image with a
resolution of H × W is first divided into a grid of 32 × 32 cells. The estimated crowd
number of an image is presented by summing all its local non-overlapping patches’ counts.
Therefore, a 96 × 96 sliding window moves from left to right and top-to-bottom with a stride
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Table 1: Performance of methods for crowd count-
ing on SHTech Part A/B and UCF-QNRF.

Method SHTech A SHTech B UCF-QNRF
MAE RMSE MAE RMSE MAE RMSE

Sorting [38] 104.6 145.2 12.3 21.2 - -
MATT [18] 80.1 129.4 11.7 17.5 - -

TransCrowd-T [21] 69.0 116.5 10.6 19.7 98.9 176.1
TransCrowd-G [21] 66.1 105.1 9.3 16.1 97.2 168.5

CCTrans [32] 64.4 95.4 7.0 11.5 92.1 158.9
LoViTCrowd 54.8 80.9 8.6 13.8 87.0 141.9

Table 2: Performance of methods for
crowd counting on Mall.

Method Mall
MAE RMSE

Method in [14] 2.74 3.46
ConvLSTM-nt [37] 2.53 11.2

ConvLSTM [37] 2.24 8.5
Bi-ConvLSTM [37] 2.10 7.6
TransCrowd-G [21] 1.72 2.18

LoViTCrowd 1.66 2.10

of 32 to cover every central cell and its eight surrounding cells. Followed by Eq. 1, we have
total Ns=32 number of patches. Such 3 × 3 grids of cell are fed into LoViTCrowd to estimate
the number of existing people in the central cell. The sum of people in Ns=32 patches is the
final crowd number estimation.

4.2 Comparisons with State-of-the-art

Evaluation metrics. To evaluate the crowd counting performance, we used two standard
regression metrics, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).

Results. Table 1 compares the proposed LoViTCrowd with existing crowd counting
methods, including CNN based approach [38] [18], and Transformer based approach [21]
[32], on ShangHaiTech, i.e., ShangHaiTech part A, ShangHaiTech part B, and UCF-QNRF.
As shown in Table 1, LoViTCrowd achieves remarkable results in both MAE and RMSE. In
ShangHaiTech Part A, our method shows a substantial improvement over other approaches,
including the two most recent state-of-the-art approaches utilizing Transformer, i.e., Tran-
sCrowd and CCTrans. Compared to TransCrowd and CCTrans, LoVitCrowd decreases the
MAE by up to 17.1% and the RMSE by up to 23.0%. Meanwhile, on ShangHaiTech Part B,
compared to TransCrowd, LoViTCrowd is very competitive with an improvement of 7.5%
in MAE and 14.3% in RMSE. However, the performance of LoViTCrowd is relatively poor
compared to CCTrans. CCTrans adopted the Pyramid Vision Transformer (PVT) [35] for
feature extraction, that is shown to be better than ViT for downstream tasks in the paper.
Since the ShangHaiTech Part B benchmark has diversified scales, we find that pyramid ar-
chitecture shows more favorable results than vanilla ViT. It will be the following research.

On the UCF-QNRF, one of the most challenging benchmarks for crowd counting tasks,
we also achieve state-of-the-art performance compared to other approaches. Table 1 shows
that our LoViTCrowd achieves 5.5% MAE and 10.7% RMSE improvement over CCTrans,
the most recent state-of-the-art Transformer-based approach. We also do experiment with
TransCrowd-GAP and the proposed LoViTCrowd on Mall, an extremely sparse crowd dataset.
To make a fair comparison, we compare our method to the most recently implemented ones
on Mall, i.e., [37] [14]. In Table 2, our method reduces the MAE by 39.4%, 21% 3.5%, and
the RMSE by 39.3%, 72.4% and 3.7%, compared to [14], [37] and TransCrowd, respectively.
In general, LoViTCrowd outperforms most previous crowd counting state-of-the-arts on two
of the most common evaluation metrics, i.e., MAE and RMSE, across many datasets under
various conditions.
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Figure 7: The comparison of the groundtruth and the estimated count results of different
resolutions on ShangHai Tech Part B. The images are grouped into 10 bins.

4.3 Ablation Study
We conduct several ablation experiments to study the performance of different configura-
tions, thus suggest some practical choices of LoViTCrowd for adoption.

Cross domain testing. In reality, the testing crowd scenarios are not always similar to
the training ones. To evaluate the generalization of the LoViTCrowd, we conducted cross-

Table 3: Performance of the proposed LoViTCrowd in cross-domain evaluation.
Pretrained SHTech A SHTech B UCF-QNRF Mall

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
SHTech Part A 54.8 80.9 24.2 64.3 212.4 418.6 3.3 4.1
SHTech Part B 126.7 216.8 8.6 13.8 270.4 491.7 3.1 3.9

UCF-QNRF 87.8 162.4 14.6 26.7 87.0 141.9 3.4 4.3
Mall 185.5 291.6 35.0 59.9 404.4 709.0 1.7 2.1

Multi-domain 68.0 116.2 11.3 18.4 93.4 152.9 2.5 3.1

domain evaluation where we train the model on one dataset and test on another dataset.
Moreover, to learn the underlying crowd distribution rather than being overfitting to any
specific dataset, we gathered all the training samples from four datasets to form a multi-
domain dataset and train the LoViTCrowd using the same configuration.

As shown in the Table 3, on ShangHai Tech Part A/B and UCF-QNRF, the counting
errors significantly increase when evaluated on a different crowd distribution. Our proposed
model, The model trained on the multi-domain dataset achieves remarkable performance. It
reaches the second place compared with different cross-domain configurations, this shows
that adding many distributions to the training dataset will significantly improve the model
generalizability.
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Table 4: Performance of the proposed
LoViTCrowd on Mall with the configuration
of different sets of step sizes used in training
phase.

Step Size No. Train Samples MAE RMSE

s = {32} 240000 1.9 2.5

s = {10, 32} 2436000 1.7 2.1

s = {10, 20, 32} 3006400 1.7 2.2

Table 5: Performance of the proposed
LoViTCrowd on ShangHai Tech Part B
with the configuration of different reso-
lutions.

Resolution No. Train Samples MAE RMSE
640 × 480 966400 9.4 15.3

1024 × 768 2822800 8.6 13.8
2048 × 1152 9208800 8.0 13.0
3840 × 1920 30276800 10.7 17.8

Different choices of the step values for extracting patches in training. From Eq. 1,
given a set of step value, i.e., s = {s0,s1, ...,sK}, the volume of training dataset equals to
Ntotal = ∑

K
i=0 Ns=si . When using a 96 × 96 sliding window with varying step sizes over the

image to extract patches for training, the result is further improved since the training dataset
becomes larger. As shown in Table 4, with strides of {10,32}, the counting errors on Mall
decrease significantly, i.e., 10.5% MAE and 16.0% RMSE, compared to single-step size with
a value of 32. The result of LoViTCrowd saturates when adapting more strides, i.e., 10, 20,
and 32. Considering the trade-off between the total number of training samples and counting
errors, the step value s = {10,32} is optimal.

Different resolutions. Higher resolution not does only lead to more patches, followed
by Eq. 1, but it also "zooms in" the human scales for better crowd estimation result. Table
5 shows the ablation study of image’s resolution on ShangHai Tech Part B, i.e., 640 × 480,
1024 × 768, 2048 × 1152 and 3840 × 1920. For a fair comparison, we conducted exper-
iments with step values of s = {10,32} during training. The MAE and RMSE are reduced
from 9.4 and 15.3 to 8.0 and 13.0, respectively, by resizing the images to 2048 × 1152.
The counting errors are slightly improved compared to the resolution 1024 × 768. Too high
resolution makes the cell grid not large enough to fully encapsulate the main visible human
body, drastically reducing the quality of training samples. For instance, despite the enor-
mous volume of data generated by initially resizing the images to 3840 × 1920, the counting
performance decreases significantly. For more details, we visualize the comparison between
actual counts and predicted count results from different resolution configurations in Fig. 7.
ShangHai Tech Part B images are grouped into ten bins according to the groundtruth number
of people in each sample. The y-axis is the average human counts of images in each bin.
Considering the trade-off between computing cost and performance, the resolution of 1024
× 768 is recommended.

Permutation importance of the adjacent cells. When predicting the number of people
in the central cell, we aggregate the context information from its neighboring cells. To
highlight the importance of those cells, we mask one of the eight adjacent cells in each
experiment and measure the performance on the whole ShangHai Tech Part B dataset as
visualized in Fig. 8.

Fig. 9 shows the total MAE in each of the eight settings. The central cell shows the MAE
of the original configuration, where no cell is masked. The higher the MAE indicates, the
more important the cell as it is masked during testing.

Interestingly, when masked, the two top left and top right cells show an improvement in
MAE. It suggests that those cells are not important to estimate the number of people in the
central cell. Furthermore, masking those cells intuitively removes irrelevant information and
improves crowd estimation performance.
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Relevant information for the central cell are shown to reside in the second and the third
rows as the performance decreases when masked. The cell below the centroid is remarkably
important. Masking this cell leads to a surge in MAE. Considering a human body, this cell
would contain the bodies of the humans, thus making it crucial to estimate the crowd number
of the central cell where their heads are inside.

To explain the importance of the middle top cell that also shows a high MAE when
masked, we anticipate that this cell would help the model avoid false positive head counts
in the central cell. The central cell would not consider the bodies as people to be counted if
their heads are within the top cell.

Figure 8: Eight different types of masking set-
ting before predicting the people count in the
central cell (red bounding box areas).

Figure 9: Visualization of LoViTCrowd’s
performance (MAE) on ShangHai Tech
Part B with the respective configuration of
neighboring cell’s masking.

5 Conclusion

In this paper, we proposed LoViTCrowd, a novel cell-based network using ViT for crowd
counting. Our model is designed to capture fine-grained features from every 32 × 32 cells
so that it can effectively estimate the number of people locally. We conducted extensive ex-
periments on four publicly available crowd counting benchmarks to demonstrate the superior
performance of our proposed LoVitCrowd compared to several existing methods for crowd
counting while being very simple to implement. Ablation studies are also carefully con-
ducted to give insights into practical considerations of our method. We plan to evaluate our
approach on other datasets with various crowd scenarios to justify its robustness in multiple
domains.
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