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Introduction

• Vision Transformers, whether monolithic or non-
monolithic, both suffer when trained from scratch on
small datasets.

• ViT’s lack locality, inductive biases and hierarchical
structure of the representations which is commonly
observed in the Convolutional Neural Networks. As a
result, ViTs require large-scale pre-training to learn such
properties from the data for better transfer learning to
downstream tasks.

• We show that inductive biases can be learned directly
from the small dataset through self-supervision, thus
serving as an effective weight initialization for finetuning
on the same dataset

• Our proposed self-supervised inductive biases improve
the performance of ViTs on small datasets without
modifying the network architecture or loss functions

Highlights

• Our approach is simple in nature and yet outperforms [1, 2, 3]
by notable margins both in terms of trainable parameters and
generalization (top-1 accuracy) on Tiny-ImageNet.

Methodology

• Pretraining: At the pretraining stage, we learn self-supervised weights
by predicting low resolution local and global views via self- distillation
through student and teacher networks [3].

• Finetuning: At the fine-tuning stage, self-supervised weights are used
to initialize ViT for supervised learning. Our self-supervised inductive
biases ease ViT optimization during supervised learning on small-scale
datasets.

• Sensitivity towards initialization: We observe that ViT training can be
unstable depending upon weight initializations e.g., CaiT performs
poorly when initialized with Gradinit [4]. Similarly, the generalization
of ViT and Swin varies a lot with different weight initialization
methods.

Analysis and Results

Attention to salient regions Conclusion

Quantitative results: Our approach performs favorably well against different
ViT baselines [1,2] as well as CNNs without adding any additional parameters
or requiring changes to architecture or loss functions.

Robustness: Our training method improves model robustness
against 18 natural corruptions.

Finegrained datasets: Our approach outperforms
the existing SOTA approach on the finegrained
datasets.

SSL comparison: Our approach performs favorably
against existing SSL approaches on small-scale
datasets.

Data Efficiency: Our approach consistently performs
better with limited training data.

• In this work, we introduce an effective strategy to train
Vision Transformers on small-scale
low-resolution datasets without large-scale pre-training.

• We propose to learn self-supervised
inductive biases directly from the small-scale datasets.
We initialize the network with the
weights learned through self-supervision and fine-tune
it on the same dataset during the su-
pervised training.

• We show through extensive experiments that our
method can serve as a
better initialization scheme and hence allows to train
ViTs from scratch on small datasets.
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Our proposed approach is able to capture the shape of the salient
objects more efficiently with minimal or no attention to the background.


