Revisiting Single-gated Mixture of Experts

Qualcom

Al research

- Amélie Royer Ilia Karmanov Andrii Skliar Babak Ehteshami Bejnordi Tijmen Blankevoort
- Qualcomm Technologies Netherlands, B.V.
- {aroyer, ikarmano, askliar, behtesha, tijmen}@qti.qualcomm.com \searrow

1. Motivation

Mixture of Experts (MoE) are rising in popularity as a means to train extremely large models yet allowing for a reasonable computational cost at inference time. However, state-of-the-art approaches either:

(*large-scale MoE*) Utilize many experts and routing decisions that • have to be trained jointly, which leads to training instabilities and can make it hard to implement the routing in practice (*hierarchical classifiers*) Define rigid per-class routing that might **not be optimal subsets** of the data to train on

2. Our Improved Single-gated MoE Design

We propose to revisit the single-gate MoE and improve its accuracyefficiency trade-off, as well as training practicality. Key to our work are:

- A full base model branch acting both as an early-exit (efficiency) and an ensembling regularization scheme (accuracy)
- A simple and efficient asynchronous training pipeline without router collapse issues
- An automatic per-sample clustering-based initialization.

Figure 1: Single-gated MoE contain a shared branch of *few* layers (the **base model** ϕ) and a set of K (here, K = 4) separate **experts**. Each sample is routed to a *unique* expert during execution to produce the final model predictions. The routing is decided by a small lightweight gate module, which takes as inputs the base model output features.

Figure 2: We propose improvements to the traditional single-gated MoE:

- Accuracy improvement: We use a full network as our base model, and use its logit outputs to regularize the experts via *ensembling*
- **Efficiency improvement**: By design, we can use the base model's output as early exit at inference time, avoiding the computational cost of the experts
- **Training:** We propose an efficient asynchronous and stable training scheme: The gate is initialized by clustering the base models features, then frozen. Experts can thus be trained separately, and the gate does not risk mode collapse

3. Training Scheme

The components of our model are:

The base model ϕ is network trained on the whole dataset, and is executed for every input. It captures **shared generic knowledge**.

Experts e_k take as input an intermediate feature map of the base model. At inference, the most probable expert is executed. They capture **specialized knowledge**.

Asynchronous Training algorithm

- **Step 1:** Train the base model φ (or use off-the-shelf) then **freeze Step 2 (init routing):** Cluster the base model embeddings using K-**Means**, obtaining cluster centers c_{1...K}
- Define target gate g^{*} to route samples to the closest centroid **Step 3 (train):** Train the gate g by minimizing **KL(g, g*)** then **freeze** For $\mathbf{k} = 1$ to K (asynchronous) do

4. Any-time Performance for Mazimized Efficiency

Default Behavior (static): Select the top-1 expert chosen by the gate

Early-exiting (dynamic): Exit after the base model forward pass

Top-k experts (dynamic): Select more than one expert and combines their output via ensembling

We find that we can implement both dynamic behavior with a simple thresholding rule and achieve good performance. More complex (e.g., learned) early-exiting strategies did not help.

Ensemblers d_k combines outputs of the base model and selected expert. We experiment with several ensembling designs and use bagging in practice: $d_k(\mathbf{x}) = \phi(\mathbf{x}) + e_k(\mathbf{x})$

- **Initialize** k-th expert from the base model's weights
- **Sample** training example set D_k by following the distribution

tr18

(60.4%)

- given by $g + \epsilon$, where ϵ is **regularization** noise
- Train the k-th **exper**t on Dk

66

64

58

56 ·

(56.3%)

ResNet18

 $\alpha_k = g(k \mid x) \left(1 - \max_{v} \phi(y \mid x)\right)$

ee(x) = 1 if $f \forall k, \alpha_k(x) < \tau$

Combined gate and base model confidence

Early exit if no expert is confident enough

$$\operatorname{out}^{anytime}(x) = \frac{ee(x)\phi(x)}{\phi(x)} + \left(1 - \frac{ee(x)}{k}\right)\sum_{k} \mathbf{1}_{\alpha_{k} \geq \tau} g(k \mid x) d_{k}(e_{k}(y \mid x))$$

6. Per-sample Assignment

The per-sample routing uncovers meaningful intra-class variations. This shows the limits of per-class routing (e.g. Hierarchical classification) as it can sometimes be too rigid to capture data diversity

other animals (*right*) for full-view images.

5. Results on Image Classification

Figure 3: MACs (efficiency) vs Accuracy results on CIFAR100 on

Figure 4: MACs versus Accuracy results on tiny-ImageNet on

MACs

— Backbone baselines

Any-time performance

Ensembled MoEs (ours)

Ensembling baselines (1 expert)

ResNet18 (\odot), compared against different widths of ResNets (\leftarrow) and a one expert baseline (\triangle)

ResNet18	No early exit	τ = 0.75	τ = 0.5	MobileNet	No early exit	τ = 0.75	τ = 0.5	Comparison to multi-gated MoEs	# gates	Асс	GMAcs	# train params
1-expert	71.50	71.50	71.13	1-expert baseline	68.06	68.13	68.15	Ours	1	72.17	2.64	5.1e9
4 experts	72.17	72.11	71.68	4 experts	68.60	68.59	68.44	τ = 0.75	1	72.11	2.18	5.1e9
20 experts	72.38	72.38	71.73	20 experts	68.58	68.53	68.46	DeepMoE [1]	17	70.95	1.81	7.0e9
MACs x1e9	2.64	2.18	2.03	MACs x1e7	8.13	6.83	6.36					

 Table 1: ImageNet results with ResNet18
 base model (69.76% accuracy, 1.82 GMACs). Experts are implemented as 2 residual blocks + 1 linear layer

Table 2: ImageNet results with MobileNetv3 base model (67.67% accuracy, 5.65e7 MACs). Experts are implemented as 4 inverted residual blocks + 1 linear layer

 Table 3: Comparison to DeepMoE [1] baseline: [1]

trains a twice wide ResNet alongside a gate in each layer that selects half of the channels as inactive: The inference cost is that of ResNet-18, but the training cost is of a twice as wide network

tr34

tr50

1e9

63.4%) (63.2%)

but is grouped with e.g., bell pepper when the image is a close-up of its orange beak

Conclusions

• We augment MoE with a novel **ensembling scheme** and a simple asynchronous and stable training pipeline leveraging a per-sample clustering-based initialization.

• Our model consistently reaches higher accuracy than hierarchical classifiers and a 1-expert ensembling baseline, revealing the benefits of training specialized experts with per-sample routing.

• Finally, maintaining the base model as an independent branch allows us to further save computations at inference time using a **simple threshold-based conditional** rule to adapt the computational budget without retraining.

[1] Deep Mixture of Experts via Shallow Embeddings, published in UAI 2019

QUALCOMM AI RESEARCH IS AN INITIATIVE OF QUALCOMM TECHNOLOGIES, INC