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Supplemental Material to BMVC-#736
“Revisiting Single-gate Mixtures of Experts”

1 Datasets Detailed Description
We perform experiments on three datasets which we describe below:

• CIFAR-100 [23] (32x32 images, 50k training samples, 10k test samples, 100 classes)
is a classic benchmark for small-scale image classification.

• tiny-ImageNet [26] (64x64 images, 100k training samples, 10k test samples, 200
classes) is a downscaled subset of ImageNet. It is significantly more challenging than
CIFAR-100, which, combined with its reasonable scale, allows us to perform compre-
hensive ablation experiments in this study.

• ILSVRC2012 [41] (224x224 images, 1.28M training samples, 50k test samples, 1000
classes) is the de-facto benchmark for large-scale classification.

2 Training hyperparameters
In this section, we report the hyperparameters we used to train our baselines and run our
experiments.

CIFAR-100. We follow the training pipeline of [9] to train our CIFAR-100 baselines. Each
model is trained for 200 epochs with an initial learning of 0.1; The learning rate is decayed
by a factor of 5 at epoch 60, 120 and 160. The model is trained with SGD with a momentum
of 0.9. Finally, we use a batch size of 128. For training the experts, we use the same hy-
perparameters, but train them with batch size 512 (4 times fewer training iterations), starting
from pretrained weights from the base models.

tiny-ImageNet. We follow the training pipeline of [27] to train our tiny-ImageNet base-
lines. Each model is trained for 400 epochs with an initial learning of 0.2; The learning rate
is decayed by a factor of 10 at epoch 200 and 300. The model is trained with SGD with a
momentum of 0.9. Finally, we use a batch size of 256. For training the experts, we use the
same hyperparameters, but only train for 100 epochs and the same batch size of 256, starting
from pretrained weights from the base models.

ImageNet. We use the torchvision default pretrained models, whose training hyperparam-
eters details can be found in torchparams. We train all our experts with the same hyperpa-
rameters except (i) We use cosine learning rate decay and (ii) we use fewer training iterations
(45 epochs with batch size 2048 for our experts, versus 90 epochs with batch size 32 in the
original ResNet18, and 600 epochs with batch size 128 in the original MobileNetv3-small).
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3 Qualitative Analysis of Experts specialization
In this section, we report on a few qualitative results to highlight how the experts specialize
during training. First, we perform a simple analysis on trained experts: For each sample,
we record which expert reaches minimal cross-entropy loss on that given sample. We then
display the resulting class distribution across experts of the whole training set. We report the
results in Figure 4: We observe that the experts do end up specializing to specific subsets
of the data, although, in contrast to hierarchical classification, many classes are still clearly
split across several experts. Furthermore, most of these specialization patterns are consistent
across the number of experts. Finally, while some experts clearly account for more classes
than others, no expert is ever fully inactive.

Second, we visualize the initial sample-to-expert assignment from the gate g0, follow-
ing the K-means clustering step on the base model. We report some of these visualizations
on ImageNet in Figure 5. The initial gate does find meaningful groupings in the dataset,
following the base model’s pretrained embeddings; Furthermore, the mapping does not ex-
actly respect the dataset’s labels as most classes are distributed across more than one expert.
Finally, we observe that there are different levels of "density" across the clusters: E.g. the
9-th expert is very self-contained and contains almost entirely all dog breeds. In contrast the
6-th expert contains many more varied classes, and not always fully, mostly composed of
common household objects.
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Figure 4: Specialization pattern of the trained experts for 20 experts (left) and 5 experts
(right) on the tiny-ImageNet dataset. The x-axis represents the 200 classes, and the y-axis
represents the experts. The cells’ colors represent the number of training samples of said
class and for which said expert yields the lowest cross-entropy loss

4 Analysis of the EM Training Scheme
As described using the EM algorithm allows us to jointly train the gate alongside the experts,
while preserving some training stability. In particular, a determining factor is NE , the number
of E steps update. The higher this number is, the more often the gate is updated based on
experts feedback. Our asynchronous training pipeline (Algorithm ‘) can be seen as a special
case NE = 0.

Given a fixed number of total epochs, ne we vary the number of EM iterations, NE . For
our proposed training pipelines (NE = 0) this means that the experts are trained for ne epochs
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(a) Example of two self-contained / highly specialized experts

(b) Example of complex experts with much higher class variation
Figure 5: Visualization of some sample-to-expert mappings from the precomputed initial
gate g0 on ImageNet for 20 experts and the ResNet18 base model. Each pie chart represents
an expert; For readability, only the slices of the top-k classes are displayed individually. The
percentage inside a slice is the percentage of this class among the samples mapped to this
expert. Conversely, the percentage next to the class label is the percentage among all samples
of the class (across all experts): A high percentage means that the class is almost entirely
contained in one cluster. Best seen zoomed in.

with the fixed initial gate g0. For NE > 0, the experts are also trained for ne epochs, but every
ne

NE+1 epoch, the gate weights are updated based on the current experts’ performance using
the E step formula in Equation 2.

We report quantitative results on tiny-ImageNet in Figure 6 (left), and observe that joint
training does result in more accurate models. However, this makes training cumbersome as
it requires synchronization across experts every time the E step is computed, i.e., a total of
NE times.
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For the case of NE = 40, we further analyse the difference between the initial gate g0
and the learned gate g at the end of training, as shown in Figure 6 : The two gates differ
on roughly 14% of the training dataset, and the assignment differences are not random but
follow a specific pattern across classes.

NE
top-1-acc top-1 acc

(w/o ensembling) (w/ ensembling)

0 (ours) 63.11 65.72

10 63.46 65.74
20 63.58 65.84
40 64.48 66.15 200 Classes
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Figure 6: (left) Impact of increasing the number of E steps, NE , when jointly training the
gate and experts, using the setup of Table ?? (tiny-ImageNet, 10 experts). The total training
budget is the same for all runs, only the number of updates differ. (right) We plot the heatmap
of the difference between the class-to-expert assignments of the initial gate g0 and the final
trained gate for NE = 40.

We also detail the five most consistent differences in assignment between these two gates
below: The samples assigned to a different expert by the learned gate g are semantically
meaningful: g often re-assigns the samples to an expert that already contained a large pro-
portion of its ground-truth class.

✓ 40 samples of the class steel arch bridge and 105 samples of the class triumphal
arch originally mapped to expert 4 by g0 are mapped to expert 5 by the learned gate
instead.

✓ 96 samples of the class espresso originally mapped to expert 6 by g0 are mapped
to expert 7 by the learned gate instead.

✓ 81 samples of the class European Fire Salamander originally mapped to ex-
pert 8 by g0 are mapped to expert 1 by the learned gate instead.

x 59 samples of the class bikini originally mapped to expert 2 by g0 are mapped to
expert 9 by the learned gate instead.

For reference, and to better understand each expert’s specialty, the most often assigned
expert to each class by the original g0 gate in this experiment was as follows:

• Expert 1: European fire salamander, bullfrog, tailed frog, American alligator, boa
constrictor, trilobite, scorpion, tarantula, centipede, brain coral, slug, sea slug, spiny
lobster, dugong, cockroach, sea cucumber, snorkel, coral reef

• Expert 2: academic gown, apron, bikini, bow tie, cardigan, Christmas stocking, fur
coat, kimono, miniskirt, neck brace, plunger, poncho, potter’s wheel, punching bag,
sock, sombrero, sunglasses, swimming trunks, teddy, vestment, ice lolly

• Expert 3: goose, koala, Chihuahua, Yorkshire terrier, golden retriever, Labrador re-
triever, German shepherd, standard poodle, tabby, Persian cat, Egyptian cat, cougar,
lion, brown bear, guinea pig, hog, ox, bison, bighorn, gazelle, Arabian camel, orangutan,
chimpanzee, baboon, African elephant, lesser panda
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• Expert 4: abacus, altar, bannister, barbershop, brass, cash machine, chest, computer
keyboard, confectionery, desk, dining table, freight car, organ, parking meter, pay-
phone, refrigerator, rocking chair, scoreboard, sewing machine, space heater, turnstile,
comic book

• Expert 5: black stork, albatross, barn, beacon, birdhouse, cannon, cliff dwelling,
crane, dam, flagpole, fountain, gondola, lifeboat, obelisk, picket fence, pole, projectile,
steel arch bridge, suspension bridge, thatch, triumphal arch, viaduct, water tower, alp,
cliff, lakeside, seashore

• Expert 6: American lobster, frying pan, wok, plate, guacamole, ice cream, pretzel,
mashed potato, cauliflower, bell pepper, orange, lemon, banana, pomegranate, meat
loaf, pizza, potpie

• Expert 7: goldfish, jellyfish, king penguin, backpack, barrel, bathtub, beaker, beer
bottle, binoculars, broom, bucket, candle, CD player, chain, drumstick, dumbbell,
gasmask, hourglass, iPod, lampshade, magnetic compass, nail, oboe, pill bottle, pop
bottle, reel, remote control, sandal, stopwatch, syringe, teapot, water jug, wooden
spoon, espresso

• Expert 8: black widow, snail, ladybug, fly, bee, grasshopper, walking stick, mantis,
dragonfly, monarch, sulphur butterfly, spider web, mushroom, acorn

• Expert 9: basketball, butcher shop, jinrikisha, lawn mower, maypole, military uni-
form, rugby ball, torch, umbrella, volleyball

• Expert 10: beach wagon, bullet train, convertible, go-kart, limousine, moving van,
police van, school bus, sports car, tractor, trolleybus

5 Derivation of the EM Algorithm

We denote by X and Y the random variables associated to the input data (images and asso-
ciated class labels respectively). We denote by Z the hidden variable associated to the index
of the expert that image X is most likely associated to.

We are interested in the two following probabilty densities:

• p(Z|X): The gate network routing a sample to an expert. This corresponds to the gate,
g(k|x), in our model.

• p(Y |X ,Z = k): The probability distribution over class labels output by the k-th expert.
This corresponds to the expert, ek(y|x), in our model.

We are interested in maximizing the total likelihood of the model, p(y|x) using Expectation-
Maximization (EM). We first derive the Evidence lower bound (ELBO) on p(y|x) using the
standard variational Bayesian framework; Introducing the variational distribution q(Z|X ,Y ),
we have:



20 ROYER ET AL: REVISITING SINGLE-GATED MIXTURES OF EXPERTS

KL(q(z|x,y)∥p(z|x,y)) = Eq log(q(z|x,y))−Eq log p(z|x,y) (4)
= Eq log(q(z|x,y))−Eq log p(z,y|x)︸ ︷︷ ︸

log p(z|x)+log p(y|z,x)

+Eq log p(y|x)︸ ︷︷ ︸
=log p(y|x)

(5)

= KL(q(z|x,y)∥p(z|x))−Eq log p(y|x,z)+ log p(y|x) (6)

Reordering the terms around, we have:

log p(y|x) = Eq log p(y|x,z)−KL(q(z|x,y)∥p(z|x))︸ ︷︷ ︸
ELBO

+KL(q(z|x,y)∥p(z|x,y))︸ ︷︷ ︸
≥0

(7)

The underlying idea of EM is a two step process in which we (i) minimize the difference
between log p(y|x) and the ELBO (i.e., minimize the right-hand term in (11)) and (ii) maxi-
mize the ELBO (left-hand terms in (11)), usually until convergence. We then reiterate these
two steps until satisfied.

E step: Minimize the difference between ELBO and the likelihood
For this we only have to compute the posterior distribution, i.e., set q to:

q(z|x,y)← p(z|x,y) = p(z|x)p(y|z,x)
p(y|x)

=
p(z|x)p(y|z,x)

∑
′
z p(z′|x)p(y|z′,x)

(8)

q(z|x,y)← g(z|x)ez(y|x)
∑
′
z g(z′|x)ez′(y|x)

(9)

M - step: Maximize ELBO with the fixed q

ELBO = Ez∼q(z|x,y) log p(y|x,z)−KL(q(z|x,y)∥p(z|x)) (10)

Using our model’s notations (and a sum over the experts rather than an expectation), this
means we have to maximize:

∑
z
[q(z|x,y) logez(y|x)−KL(q(z|x,y)∥g(z|x))] (11)

Thus we exactly recover Equations 2 and 3 from the main text

Equivalence to Backpropagation. The separation of the E and M step is crucial for
training stability: In the M step, the updates for the parameters of the gating function and
the experts become decoupled entirely, hence can be trained independently. In fact, if we
perform the E and M steps on the same batch of data, then we have by definition that
q(z|x,y) = p(z|x,y) on the current batch. Therefore, the right-hand KL divergence term
in Equation 11 is equal to 0, and the ELBO is equal to the total log-likelihood. Therefore,
the EM algorithm simply becomes equivalent to directly minimizing the total log-likelihood
log p(y|x) via backpropagation.

In other words, performing the E and M steps simultaneously is equivalent to directly
training the gate and experts jointly with standard backpropagation. However, we observed
many training instabilities using direct backpropagation (e.g. gate collapse), which also
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seems to be the case in the literature as most works introduce ad-hoc losses (e.g. balancing
loss term) when implementing joint training via backpropagation.

Intuitively, this means that EM essentially implements a delay in the parameter updates:
We estimate the probability of the data-points belonging to each expert in the E step, and
then we update the gate and expert functions following that estimate for a few epochs. The
algorithm thus incurs one extra hyperparameter on top of standard backpropagation; That is,
how many times we go through the E step to update the expert assignments estimates (we
denote this hyperparamter as NE in the main text).

6 Ablation: Expert Entry Layer
In the main paper, we always set the number of early layers shared by the experts to be about
half the architecture (i.e. 3 layers for ResNet-based models, and 8 for MobileNetv3-small).

Performing a full ablation study on this parameter shows that it could be better optimized
for further accuracy gain: For instance in Figure 7, we observe that sharing 2 layers instead
of 3 yields higher final accuracies on CIFAR-100. In both CIFAR-100 and tiny-ImageNet,
we also see that there is a clear drop when the experts are reduced to only being linear layers.
In general, we observe that the early features from the tiny-ImageNet base model are useful
to the expert until a higher depth than the CIFAR ones. Automatically tuning this parameter
for a given dataset and architecture is a research direction we consider for future work.
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Figure 7: Validation accuracy when varying the number of early layers shared by the ex-
perts. All experiments were performed using 10 experts in the tr18-tr18 configuration
on CIFAR-100 (left) and tiny-ImageNet (right).

7 Ablation: γ Hyperparameter
In this section, we analyze the effect of the γ hyperparameter that we use to smooth the gate
weights during training the experts, as described in Section 2.2: γ can be interpreted as a
non-zero weight given to all "negative samples" (those which the gate does not map to the
current expert) while training an expert. In Figure 8, we report accuracy results when varying
γ . We observe that too low values of γ are detrimental to accuracy, both with and without
ensemblers. However the model seems to be more robust to higher values of γ . In practice,
we use a value γ = 0.05 for all our main experiments.
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Figure 8: Effect of varying the γ hyper-parameter (lower bound of the gate clipping opera-
tion Γ when training the experts). Results are displayed for two random seeds, and obtained
on tiny-ImageNet, for a tr18-tr18 model with 10 experts.

8 Ablation: Early-exiting based on the gate or base model
Thresholding based rule. Our framework allows for two approaches to threshold-based
early-exiting: (i) thresholding the gate’s confidence; and (ii) thresholding the base model’s
confidence. Thresholding the gate’s confidence is based on the intuition that samples which
are not routed confidently are also more likely to be classified wrong. On the other hand,
base model thresholding directly builds on the intuition that the base model predicts correct
samples with high confidence while samples with lower confidence are more likely to be
classified wrong. Based on the reliability diagrams in Figure 9, we can see that, while not
perfectly calibrated, there is a strong correlation between confidence and accuracy for the
base model, while the same is not the case for the gate module. Therefore, we use the base
model’s confidence rather than the gate’s as our guide for early-exiting in the main text and
all experiments.
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Figure 9: Reliability pattern for tr10 on tiny-ImageNet (20 tr-10 experts). The bins on
the x-axis correspond to the confidence of the base model (left) and the gate (right). The
y-axis corresponds to the accuracy on the samples in each bin.

To confirm this observations further, we also plot early-exiting results for both gate’s
confidence thresholding and base model’s confidence thresholding for one of our models
in Figure 10. We observe that base model thresholding indeed yields higher accuracy vs
early-exiting ratio trade-offs.
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(a) Gate’s confidence thresholding

(b) Base model’s confidence thresholding
Figure 10: Comparison of early-exiting by thresholding either the gate’s confidence or the
base model’s confidence for tr10-base on tiny-ImageNet (20 tr-10 experts). The x-axis
corresponds to number of MACs at different threshold values. The y-axis corresponds to
accuracy of model with early-exiting. Dashed black line corresponds to 1% accuracy drop.
Dashed red line shows result for the best performing early-exiting threshold. Boxes above
the blue curve show the different threshold values along with accuracy for each threshold.

Selecting the best threshold. We further report results for the best performing threshold
in each setting in Table 7. We present results for tr10-base on tiny-ImageNet (20 tr-34
experts) and tr34-base on tiny-ImageNet (20 tr-10 experts). Looking at the whole range
of thresholds allows us to find a model that fits the required computational budget. And
selecting the best threshold by looking at the validation set can be seen as the upper bound.
However, ideally, setting the optimal threshold properly and fairly would require an external
validation holdout set. As an alternative, we use a subset of the training data to investigate
whether we can set a threshold that generalizes well to inference time using training data
only. We report the corresponding results in Table 7.

method

base
-

expert
-

num experts

baseline acc, %
(no early-exiting)

early-exit
ratio, %

top-1
acc, %

MACs
(x 1e9)

#params
(x 1e7)

validation-selection
tr10-tr34-20 66.22 20.11 66.27 4.7 2.2
tr34-tr10-20 66.36 29.07 66.36 5.3 2.5

subset-selection
tr10-tr34-20 66.22 37.40 65.87 3.9 1.8
tr34-tr10-20 66.36 75.07 65.18 4.9 2.3

gate-learning
tr10-tr34-20 66.22 10.64 65.54 5.1 2.4
tr34-tr10-20 66.36 14.63 65.61 5.5 2.5

Table 7: Best performing thresholds for different approaches to early exiting as discussed
in Appendix 8. Validation-selection stands for selecting optimal threshold on a
validation set. Subset-selection stands for selection threshold on a subset of training
data and using that for validation set. Gate learning stands for learning a separate gate
for early exiting.
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Learning the early-exiting gate. Alternatively, we can try to train the early-exiting be-
havior for a given early-exiting budget. This approach requires slightly changing model the
architecture by adding another output to the gate g. We rewrite the early-exiting criterion to
include this new output:

ee(x) = 1(argmax
k

g(k|x) = K +1) (12)

where 1 is the indicator function, K is the number of experts, and the K+1 index corresponds
to the newly added early-exiting output. The drawback of such approach is that it requires
to train additional parameters. However, since the rest of the network is kept fixed, training
only requires a very small number of epochs and does not increase the complexity of the
entire approach much.

Similar to previous works [6, 42], we use a supervised approach to train the new gate.
However, unlike previous papers which use auxiliary classifiers to label each sample as being
fit for early-exiting or not, we use a simple approach to label the data from the solution
of an integer linear programming (ILP) problem: Specifically, we first fix an efficiency
budget τ ∈ [0,1], which is our target early exiting ratio on the training set. We then solve
the optimal early exit assignment for budget τ on the training set by solving the following
discrete optimization problem:

maximize ∑
(x,y)

[
ee(x) φ(y|x)+(1− ee(x))

K

∑
k=1

g(k|x) e′k(y|x)

]

subject to:

1
N ∑

x
ee(x) = τ

∀x, ee(x) ∈ {0,1}

where N is the total number of samples, the assignment ee(x) ∈ {0,1} is 1 when sample x
should early exit, and 0 otherwise. This is a simple ILP problem with binary variables, that
directly solves the optimal assignment on the training set. Solving this problem yields binary
labels ee(x) which we then use to learn the early-exiting gate. We report accuracy results of
the learned gate in Table 7. Overall, this approach seems to perform worse than selecting
a simple threshold based on the training set, as the learned early exiting behavior does not
generalize well at inference time.


