COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION 1

PAUMER: Patch Pausing Transformer for
Semantic Segmentation

Evann Courdier*'?2 "ldiap Research Institute,
evann.courdier@idiap.ch Switzerland.

Prabhu Teja S*'2 2EPFL, Switzerland.
prabhu.teja@idiap.ch 3 University of Geneva,
Frangois Fleuret'?3 Switzerland.

francois.fleuret@unige.ch

Abstract

We study the problem of improving the efficiency of segmentation transformers by
using disparate amounts of computation for different parts of the image. Our method,
PAUMER, accomplishes this by pausing computation for patches that are deemed to not
need any more computation before the final decoder. We use the entropy of predictions
computed from intermediate activations as the pausing criterion, and find this aligns well
with semantics of the image. Our method has a unique advantage that a single network
trained with the proposed strategy can be effortlessly adapted at inference to various run-
time requirements by modulating its pausing parameters. On two standard segmentation
datasets, Cityscapes and ADE20K, we show that our method operates with about a 50%
higher throughput with an mIoU drop of about 0.65% and 4.6% respectively.

1 Introduction

Vision transformers [5, 21] (ViT) have recently demonstrated very strong performance on
large scale image classification tasks. These networks break the images into a collection
of patches (or tokens, interchangeably) and progressively refine their representation by pro-
cessing them through a series of residual self-attention layers [26]. While their genesis was
for image classification, recent methods have adapted transformer architectures to various
computer vision tasks [2, 12, 28], and specifically to semantic segmentation [22, 29, 34].

While these large transformer architectures have lead the progress on the accuracy front,
there have been several efforts to make them more efficient to be able to process more data,
and faster [23]. One way to achieve this is to reduce the number of processed patches. Some
works use multiscale approaches [28, 29] that gradually reduce the number of patches as the
processing progresses. Another option has been to drop the patches that are not informative
to the classification task [15, 17, 18, 20, 32]. For example, it is possible to classify an image
as that of a dog with only the patches that belong to the dog, while refraining from processing
the rest of the patches.

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
* Equal Contribution.

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, and Houlsby} 2021

Citation
Citation
{Steiner, Kolesnikov, , Zhai, Wightman, Uszkoreit, and Beyer} 2021

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{Chu, Tian, Wang, Zhang, Ren, Wei, Xia, and Shen} 2021{}

Citation
Citation
{Khan, Naseer, Hayat, Zamir, Khan, and Shah} 2021

Citation
Citation
{Wang, Xie, Li, Fan, Song, Liang, Lu, Luo, and Shao} 2021

Citation
Citation
{Strudel, Garcia, Laptev, and Schmid} 2021

Citation
Citation
{Xie, Wang, Yu, Anandkumar, Alvarez, and Luo} 2021

Citation
Citation
{Zheng, Lu, Zhao, Zhu, Luo, Wang, Fu, Feng, Xiang, Torr, etprotect unhbox voidb@x protect penalty @M {}al.} 2021

Citation
Citation
{Tay, Dehghani, Bahri, and Metzler} 2020

Citation
Citation
{Wang, Xie, Li, Fan, Song, Liang, Lu, Luo, and Shao} 2021

Citation
Citation
{Xie, Wang, Yu, Anandkumar, Alvarez, and Luo} 2021

Citation
Citation
{Liang, GE, Tong, Song, Wang, and Xie} 2022

Citation
Citation
{Marin, Chang, Ranjan, Prabhu, Rastegari, and Tuzel} 2022

Citation
Citation
{Pan, fan Jiang, Panda, Wang, Feris, and Oliva} 2021

Citation
Citation
{Rao, Zhao, Liu, Lu, Zhou, and Hsieh} 2021

Citation
Citation
{Yin, Vahdat, Alvarez, Mallya, Kautz, and Molchanov} 2022

2 COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION

oL MR i
(b.1) Patches paused :| (c.1) Patches paused
after Layer 3 3 to Layer 5

(b.2) Entropy Computed (c.2) Etrop muted (c.3) Patches pro-

Figure 1: Mlustration of our proposed method. Our method p‘f??é?%sfé‘f{/'%fl& stops processing
patches after they reach a low enough prediction entropy. First column (a) shows the input
image. Second column (b.1) shows the patches that are stopped from being processed after
the third transformer layer in green. Third column shows additional patches that are paused
after the fifth layer in . In the bottom row, (b.2) and (c.2), we show the entropy computed
from the auxiliary decoders that is used to decide which patches to pause (Section 2.1). It is
apparent that the network automatically pauses easy parts of the image while allocating more
computation to the parts that correspond to boundaries, and to smaller and rarer classes, as
shown in (c.3) in red. Figure best viewed on a reader with zooming capability. Full details
are presented in Section 2.

In this work, we are interested in patch dropping in the context of semantic segmentation.
Differing from the case of image classification, it is not possible to drop patches in semantic
segmentation, as we have to predict the labels for all the pixels. Instead, we redefine the
problem in the context of semantic segmentation to patch pausing: pausing a patch at a
certain layer signifies that its representation is not going to be updated by any subsequent
encoder layer, it does not contribute to the feature computation of other patches, and it is
fed directly to the decoder. Consider segmenting natural road scenes from Cityscapes [4]
in Figure 1, it is apparent that some parts of the scene are relatively simpler to segment
(say, the sky, and the road). So, we allocate lesser computation power to these patches by
pausing their feature computation, and feed them as-is to the decoder to produce the final
segmentation map. Our argument is supported by the findings in Raghu et al. [19]; they find
that the representations of tokens is primarily modified in the first half of the network, and
relies on the residual connections to only marginally refine them in the later stages. This
opens up an opportunity to reuse the representations, instead of recomputing them, and thus
improving the efficiency of segmentation transformers.

Our criterion for token pausing is the time-tested posterior entropy of the segmentation
labels. We find that entropy is strongly indicative of lower error. Our method, called Patch
pAUsing segmentation transforMER (PAUMER), adds a simple linear auxiliary decoder to
predict labels and compute entropy, and processes only the patches whose class prediction is
of high entropy, i.e. the network is not confident about predicting the labels of these patches,
and processes them more. Based on the Segmenter [22] architecture, we show the perfor-
mance of our method on the standard benchmark suite of ADE20K [35] and Cityscapes [35].
Our method pushes the pareto front of the speed-accuracy trade-offs, and we find that we can
operate at a 50% higher throughput with a drop in mean intersection of union of 4.6% and
0.65% on ADE20K and Cityscapes respectively, and for doubling the throughput, the drop
is about 10.7% and 4.5% respectively.

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

Citation
Citation
{Raghu, Unterthiner, Kornblith, Zhang, and Dosovitskiy} 2021

Citation
Citation
{Strudel, Garcia, Laptev, and Schmid} 2021

Citation
Citation
{Zhou, Zhao, Puig, Fidler, Barriuso, and Torralba} 2017

Citation
Citation
{Zhou, Zhao, Puig, Fidler, Barriuso, and Torralba} 2017

COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION 3

2 Patch pausing transformer for Semantic Segmentation

o
o
el
& | X
Patch Pause Mask Segmenter

+ — —»!
) Transformer Encoder [>] Patch Assembler Head
=
[*]
3 L 7y

! H

N'xD
X;_1 € RVP Encoder Layer [X, RV

Ranked b
MHSA 1 FFN > ;’r]ﬂ:)pyy’_)
3

]HI[Yl X] o X) e RV

Figure 2: Schematic of our proposed method. We modify Segmenter [22] to enable pausing
of patches, and feeding them directly to the decoder. Our proposed PAUMER encoder adds
a simple auxiliary decoder (a 1 x 1 convolution), and uses the predicted posterior entropy
H[¥|X] of each component of X to reorder the feature representation X. A portion (t) of
this feature representation would be paused and fed to the decoder directly. The rest of the
features (of size N’ < N) are processed further.

h Processed further

assembler

S To patcl

x

Patch pausing for semantic segmentation is tied to the notion that computation should
be non-uniformly distributed across the image, with some parts of the input needing more
computation than others to obtain an accurate segmentation. This notion is difficult to re-
alize in the case of convolutional networks as convolution implementations in popular deep
learning frameworks handle only inputs with uniform coordinate grid, and thus need soft-
ware optimizations [13], or require architectural simplifications like the use of 1 x 1 con-
volutions in the network [27]. On the other hand, ViTs are ideally suited for this purpose,
as each transformer layer consumes a matrix of patch representations without any regard
to its inputs spatial location. Removal of patches from computation does not require any
additional modifications to the transformer networks for them to apply heterogeneously dis-
tributed computation across an image. This restricts the pausing pattern to operate at a patch
level, and these paused patches can be non-uniformly distributed over the image coordinate
grid. Our primary experiments are based on the architecture Segmenter [22], which uses
a ViT backbone to extract patch representations, and predicts a segmentation map using a
transformer-based mask decoder. We describe this in detail in Appendix C

2.1 Using Entropy as a criterion for patch-pausing

How do we determine which tokens to pause, i.e. which one do not need more processing?
Consider the unrealistic case when we have access to the ground truth labels. We could de-
code after each layer [€ {1...L}, and stop the processing of tokens for which the prediction
is accurate enough.

In the absence of ground truth to determine which tokens can be paused, we propose
to use the entropy of label predictions as a proxy for the correctness of the network’s pre-
dictions. We posit that our models, when confident about their prediction, are likely to be
correct. To sanity-check the aptness of entropy as a pausing criterion, we plot in Figure 3 the

Citation
Citation
{Strudel, Garcia, Laptev, and Schmid} 2021

Citation
Citation
{Lavin and Gray} 2016

Citation
Citation
{Verelst and Tuytelaars} 2020

Citation
Citation
{Strudel, Garcia, Laptev, and Schmid} 2021

4 COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION

entropy of predictions computed after every second layer in a segmenter. Specifically, we
use a Segmenter with ViT-Ti backbone pretrained on Cityscapes, freeze its weights, and only
train the one-layer linear auxiliary predictor added after each layer. Each vertical plot is a
histogram, and we see that in the initial layers, there is a higher overlap of correct and incor-
rect predictions’ entropies. When a token has been processed enough to predict the correct
label, the entropy of the prediction is generally low. Thus, pausing patches based on entropy
results in representations that have been refined enough to result in correct predictions.

Prediction
I Correct
I Incorrect

Entropy

1 3 7 11
. Lo Auxiliary Deco.der'After Layer.# . .
Figure 3: Violin plot of entropy of predictions at intermediate layers. In this figure, we plot

the entropy distribution of the auxiliary predictions for 10% of images in Cityscapes vali-
dation set. The x-axis marks after which layer the prediction was done. For each layer, the
entropy distribution is shown for tokens correctly (in blue) and incorrectly (in orange) clas-
sified. We see that the entropies of the predictions for tokens correctly classified accumulate
in the low values in the later layers (blue spike on the bottom-right)

2.2 Training PAUMER- One training for many pause configurations

We base our network on Segmenter’s architecture [22] detailed in Appendix C. A pause
configuration (or configuration) refers to the proportion of patches paused at each layer of
the network. An obvious method is to train and test the same patch pausing configuration
that satisfies our run-time requirements. Any changes to the run-time requirements requires
retraining the network. For this reason, we propose a more general strategy that enables
multiple patch pausing configurations at inference with just one trained model. For each
transformer layer /, we define a range of patch pausing proportions (T}O,Tf‘). For each
batch of training samples we sample uniformly one layer [€ {3,...,L} and a patch pausing
proportion T, ~ U [rl ,rl ', where U refers to a uniform distribution over the parameters. To
facilitate the patch pausing, we employ a single auxiliary decoder Dy, parametrized by a
1 x 1 convolution, after the operations of layer [(see Figure 2).

The outputs of the main branch of the network and the auxiliary branch are trained using
the traditional cross entropy loss.

»Cmam = CE(

3) (1)
Ll =CE(y,3'

) 2

where y is the ground truth, ¥ refers to the logits predicted by the main decoder (mask
transformer), and §' is the auxiliary decoder’s output at the 1" layer. The total loss used to
train is a combination of losses in Equations (1) and (2).

'Ctotal = maln + A’[’aux (3)

where A is a scalar used to scale the contribution of additional losses.

Citation
Citation
{Strudel, Garcia, Laptev, and Schmid} 2021

COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION 5

At layer [, entropy is computed for each component of X; as
H = H[¥|X;] = H[o(Da(X0))], 4)

where o is the softmax function applied to each pixel independently. With this entropy, we
pause the computation of a proportion 7; of tokens with the lowest entropy and store them
as X/, and continue with the computation using the rest of the tokens X; (see Figure 1). Note
that there are other ways to use H; to pause tokens, for example by using a threshold on
entropy. However, doing so results in pausing and removing different amounts of tokens
in each image of a batch, which would add a substantial overhead as padding is not pro-
cessed efficiently on a GPU. Additionally, pausing a fixed amount of tokens allows for a
deterministic computation time.

In order to re-assemble in the original order the patches that have been fully processed
and the ones that have been paused, we use a patch assembler module (see Appendix A for
PyTorch-like code). It takes X; and X/, and reassembles them into the original shape of Xj.
In order to do so, pausing mechanism stores the indices of the patches that have been chosen
to be paused, in addition to the current feature representation. The assembler copies the
paused representation into the same indices stored previously. This re-assembled output is
finally fed into the decoder (mask segmenter head) to compute the segmentation map.

Inference Our training procedure of randomized pause configurations gives us the ad-
vantage to choose a pausing configuration that is informed by the run-time requirements i.e.
mloU and number of images processed per second. This configuration can have multiple
pause locations, each with different pause proportions. We show some results for some con-
figurations listed in Table 1. The patch assembler accordingly assembles multiple paused
patches {X/}, and the final representation X;. The specific configurations are chosen to dis-
play the adaptability of the trained network to various inference time requirements, and do
not hold any specific importance. Pause configurations can be added easily, as it does not
influence the training, but only requires testing over the validation set.

3 Related Work

We now discuss some important prior work related to our method, before showing the ex-
perimental evidence.

Segmentation using Transformers Transformers that were originally proposed for lan-
guage processing tasks [26] have been incorporated into vision [5, 25] and several improve-
ments have been proposed [12]. SETR [34] adapted the standard vision transformer (ViT)
to segmentation by using multiscale decoder on all the image patches. Segmenter [22] im-
proved the decoder design by using a learnable per-class token that acts as weighting mech-
anism over the tokens’ representations. Segformer [29] redesigned the architecture with
a multiscale backbone that does not use positional encoding, and an MLP based decoder.
Several improvements to the transformer backbone have been shown to have impact on the
down-stream segmentation performance [1, 16, 28, 31]. These improvements to the trans-
former backbones have indeed improved the efficiency, measured by frames processed per
second, number of floating point operations per second (FLOPs), or images processed per
second.

Token sparsification methods Several components of the whole transformer architec-
ture have been improved, by approximations, and simplifications to attention mechanism.
Interested readers can refer to Tay et al. [23]. Orthogonal to the architectural improvements,

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, and Houlsby} 2021

Citation
Citation
{Touvron, Cord, Douze, Massa, Sablayrolles, and Jegou} 2021

Citation
Citation
{Khan, Naseer, Hayat, Zamir, Khan, and Shah} 2021

Citation
Citation
{Zheng, Lu, Zhao, Zhu, Luo, Wang, Fu, Feng, Xiang, Torr, etprotect unhbox voidb@x protect penalty @M {}al.} 2021

Citation
Citation
{Strudel, Garcia, Laptev, and Schmid} 2021

Citation
Citation
{Xie, Wang, Yu, Anandkumar, Alvarez, and Luo} 2021

Citation
Citation
{Chu, Tian, Wang, Zhang, Ren, Wei, Xia, and Shen} 2021{}

Citation
Citation
{Liu, Lin, Cao, Hu, Wei, Zhang, Lin, and Guo} 2021

Citation
Citation
{Wang, Xie, Li, Fan, Song, Liang, Lu, Luo, and Shao} 2021

Citation
Citation
{Xu, Xu, Chang, and Tu} 2021

Citation
Citation
{Tay, Dehghani, Bahri, and Metzler} 2020

6 COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION

recent work has focused on the reduction of the data processed, and our proposed method is a
form of input dependent reduction. Graves [8] proposed Adaptive Computation Time (ACT),
where the amount of processing for each input to an RNN is decided by the network by de-
termining a halting distribution. It was adapted to residual networks by Figurnov et al. [7],
that dynamically decides to apply differential number of residual units to different parts of
the input. This has been adapted to transformers too [32], where the tokens are progressively
halted as they are determined have been processed enough according to a similar criterion as
ACT. DynConv [27] uses an auxiliary network to predict pixel masks using which indicate
pixels of the image that are not processed by a residual block. DynamicViT [20] extends this
formulation to transformers where they, similarly, use an auxiliary network to predict which
patches are dropped from being refined further. The auxiliary branches are trained using the
Gumbel-softmax trick [10] in both these methods. We consider simplicity of the steps the
strength of our proposed method. Unlike DynamicViT [20], we do not need techniques like
Gumbel-softmax that are harder to optimize, and additional tailored losses. Additionally,
both A-ViT and DynamicViT drop a fixed amount of patches for a given image, and do not
provide the flexibility to vary the number of patches dropped, as our method does.

Early-exit methods Dynamic neural networks [9] adapt the architectures or parameters
in an input adaptive fashion. Specifically, early-exit methods find that deep neural networks
can overthink where a network can correctly predict before all layers process the input, and
it can even result in wrong predictions due to over-processing [11]. Several methods to de-
termine when to exit the network have been proposed. Branchynet [24] and Shallow-Deep
nets [11] uses auxiliary classifiers to predict the output class for vision convolutional net-
works, and stops processing a sample if the entropy of a branch’s predictions is lower than
a predefined threshold. This idea was further exploited in NLP literature. Zhou et al. [36]
extends this by using a patience parameter that tracks number of auxiliary classifiers which
predict the same class. DeeBERT [30] proposes a two stage training, where the auxiliary
decoders are trained after the main networks is trained, and frozen. Li et al. [14] propose
a layer cascade for convolutional segmentation networks, that processes easy to hard parts
progressively through the network. Their method needs modifications of the network archi-
tecture, whereas we show that our proposed method can be added with very little efforts.
Our method is an early exit strategy, specifically for the case of segmentation transformers.
While similar methods have been examined in literature, to the best of our knowledge, we
are the first to examine the patch pausing problem of semantic segmentation. Also, the ran-
domized training presented in Section 2.2 has not been used in this context, though similar
ideas to reduce network width were studied in slimmable networks [33].

4 Experiments

4.1 Datasets and Evaluation

We show the performance of our method using networks trained on Cityscapes [4] and
ADE20K [35]. Cityscapes (CS) consists of 2,975 images in the training set, in which each
pixel belongs to one of 19 classes, and 500 images in the validation set which are used to
benchmark the performance of our method. ADE20K is substantially larger, with a training
set of 25,574 with 150 classes, and 2,000 images to validate the performance. The results
for Cityscapes and ADE20K are presented below.

Our primary performance measure is based on the speed-accuracy trade-off, measured

Citation
Citation
{Graves} 2016

Citation
Citation
{Figurnov, Collins, Zhu, Zhang, Huang, Vetrov, and Salakhutdinov} 2017

Citation
Citation
{Yin, Vahdat, Alvarez, Mallya, Kautz, and Molchanov} 2022

Citation
Citation
{Verelst and Tuytelaars} 2020

Citation
Citation
{Rao, Zhao, Liu, Lu, Zhou, and Hsieh} 2021

Citation
Citation
{Jang, Gu, and Poole} 2016

Citation
Citation
{Rao, Zhao, Liu, Lu, Zhou, and Hsieh} 2021

Citation
Citation
{Han, Huang, Song, Yang, Wang, and Wang} 2021

Citation
Citation
{Kaya, Hong, and Dumitras} 2019

Citation
Citation
{Teerapittayanon, McDanel, and Kung} 2016

Citation
Citation
{Kaya, Hong, and Dumitras} 2019

Citation
Citation
{Zhou, Xu, Ge, McAuley, Xu, and Wei} 2020

Citation
Citation
{Xin, Tang, Lee, Yu, and Lin} 2020

Citation
Citation
{Li, Liu, Luo, Changeprotect unhbox voidb@x protect penalty @M {}Loy, and Tang} 2017

Citation
Citation
{Yu, Yang, Xu, Yang, and Huang} 2019

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

Citation
Citation
{Zhou, Zhao, Puig, Fidler, Barriuso, and Torralba} 2017

COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION 7

by mean Intersection over Union (mloU) metric and throughput in images per second. To
determine the number of images processed per second (IMPS), following Strudel et al. [22],
we use images of size 512 x 512 with a batch size that optimally occupies a V100 GPU.

Methods compared To assess the performance of our proposed method, we use the
following baselines for comparison:

a. Baseline set by Segmenter, without any patch pausing.

b. Random Pausing (RP): We train the network to handle pausing a proportion T of
randomly chosen patches, instead of the lowest entropy ones.

We examined an additional simple baseline of random pausing (without training), and found
the results not competitive enough to warrant reporting here. Also, some methods in Sec-
tion 3 are capable of dropping different patches per image. These methods can result in a
decrease in FLOPs (floating point operations), but this reduction cannot be realized in wall
clock improvements as modern GPUs parallelize computation over batch elements.

5| | Pause configurations

<

j 3102 04 0.6 02 03 04 02 03 04
215 02 04 06 08 02 03 04 02 03 04
& |7 02 03 04

Table 1: Table of configurations. Each column represents a pause configuration, e.g. the first
column represents the configuration pausing 20% of tokens after layer 3, using the notation
introduced in Section 2.2. Each configuration here corresponds to a marker in Figures 4a, 4b
and 13.

Training hyperparameters and Inference Configurations: For our main experiments,
we use Segmenter with ViT-Ti and ViT-S backbones (details in Appendix B). During train-
ing, we follow the procedure in Section 2.2 for every network and dataset, and in particular
we pause a random amount of tokens 7; ~2£[0.2,0.8] at a random layer [€ {3,4,5,6,7,8,9}.
We initialize the model for our training with pretrained segmenter weights, as we find this re-
sults in better performance, and train the model for 80,000 steps for Cityscapes and 160,000
steps for ADE20K. The auxiliary loss-weight A is set to 0.1. Rest of the hyperparameters as
kept the same as in Strudel et al. [22]. We implement our method using mmsegmentation [3],
and use their pretrained models whenever available. At inference, we test the networks with
the pause configurations in Table 1. This list of pause configuration is not exhaustive, and
does not hold any specific importance, but have been chosen to show the efficiency of our
method in trading off mIoU for higher IMPS.

Choosing pause configurations: Determining the appropriateness of a pausing config-
uration incurs little additional cost, as it only requires inference with a validation set for each
configuration of interest (see Figures 4a and 4b). On a new dataset for which we train the
network with the proposed training procedure, we foresee two scenarios:

1. If the objective is to attain a specific throughput, we can easily find configurations
that match the requirement with a sweep over them (Figures 9 and 10) by only timing
them, and then evaluating the mIoU of the ones that meet the time requirement.

2. If the objective is to find a good throughput-mloU trade-off: First, we sweep through
configurations that pause at only one layer (Figure 9) and we pick the first layer and

Citation
Citation
{Strudel, Garcia, Laptev, and Schmid} 2021

Citation
Citation
{Strudel, Garcia, Laptev, and Schmid} 2021

Citation
Citation
{Contributors} 2020

8 COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION

proportion. We fix this layer and ratio, then sweep through pausing configurations at
a second layer (Figure 10). We repeat this procedure until adding more layers is no
longer beneficial.

4.2 Results

Performance analysis In Figure 4a, we plot the mloU versus the number of images per
second achieved by baselines and our entropy patch pausing for different configurations, for
Cityscapes. Each point is the average value of three training runs. The left-most point cor-
responds to the original Segmenter model, in solid line our proposed pausing strategy, and
in dashed line random pausing with training. For both ViT-Ti and ViT-S backbones, a 50%
increase of IMPS can be achieved with an mloU drop of about 0.7% and 0.6% respectively.
Further, for doubling the IMPS, we see that the mIoU drops about 3.2% and 5.9% respec-
tively. For the trained random pausing using ViT-Ti, a strong baseline, the equivalent drops
in mloU are about 2.9% and 8.8% to increase the IMPS by 50% and 100%, respectively.
We show results for ViT-Ti and ViT-S for ADE20K in Figure 4b. For ViT-Ti backbone, we

Backbone=ViT-Ti Backbone=ViT-S Pause locations
7 ‘ .,
Ah—y 5 =y
- x_ Aﬁ‘\A 75 x;*; <A 3.5
72 R~ ! 3\ \
e \ N — 3,57
37 Hase A NN — 5
£ \‘x‘ 70 % X No pause
68 N \\ k' A Pausing method
g u ~ \)
66 x\ AN 65 \ —4&— PAUMER
SN A --#%-- Trained Random Pause
100 500 600 700 800 900 200 250 300 350 100 150 500 @ Segmenter
Images/second Images/second

(a) mIoU vs Images processed per second for ViT-Ti and ViT-S backbones on Cityscapes val set.

Backbone=ViT-Ti Backbone=ViT-S Pause locations
[) 15 | @ —— No pause
_ A‘\A» e 3
» Xtk 10 x""x::%\m 3
“ign, Ay A '
330 Roe b - L2 — 3,57
-_— s, y Pl K. N
£ o5 Ax \Ax Pausing method
’ 30 —@— Segmenter
20 -~ --&- PAUMER
25 #-- Trained Random Pause
100 500 600 700 250 300 350 100
Images/second Images/second

(b) mloU vs Images per second for ViT-Ti and ViT-S backbones on ADE20K val set.

Figure 4: Results on Cityscapes and ADE20K for our proposed method PAUMER. Each
marker is a configuration from Table 1. We train a single model capable of handling various
pause configurations that can be chosen based on run-time requirements. It is apparent that
ADE20K suffers from a higher drop in performance when patch pausing is employed. How-
ever, PAUMER consistently outperforms the random training baseline.

see that for a 50% increase in IMPS, mloU drops by about 2.8%, and a 100% increase in
IMPS with a mIoU drop of about 10.7%, compared to random pausing performance of 5.4%
and 13.5%. The drop in mloU is in contrast with the results of Cityscapes, where we could
achieve similar increase in throughput with a much lesser drop in performance. We chalk
this difference up to dataset characteristics; ADE20K has almost an order of magnitude more

COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION

9

classes, and the images are smaller with cluttered scenes and numerous small objects, which
may require more processing to be correctly classified.
Generating these performance plots i.e. mloU vs IMPS is inexpensive, as no retrain-
ing is involved and only needs inference on a validation set with reasonably chosen pause
configurations.

ADE20K

100 200 300 100 500 600 700
Images /second

® e 000 L]

>

Model type
Segmenter
UPerNet
DeeplabV3+
FastFCN
DeepLabV3
PSPNet
PAUMER-Ti
PAUMER-S
Architecture
Transformer
Conv Net

PAUMER

Cityscapes

200

400
Images /second

600

800

Model type
Segformer
DeeplabV/3+
DeeplabV3
PSPNet
FastFCN
SETR
BiSeNetV1
ICNet
PAUMER-Ti

PAUMER-

PAUMER

Figure 5: Performance comparison for ADE20K and Cityscapes. We compare to pretrained
models available in mmsegmentation [3] for each of these datasets. Architectures devised for
speed or accuracy outperform us on those criteria, but PAUMER has the unique advantage that
we can trade off one for the other using a tunable hyperparameter. Here, we show the pareto
front of PAUMERWe use different colors for different architectures, and different shapes for
architectural families.

Comparison to other architectures In Figure 5, we compare our method to a broad array
of architectures for which pretrained models are available in mmsegmentation [3]. Here we
plot only the best performances obtained for each throughput across pause configurations.
We estimate this by computing the skyline queries. We include both convolution based
architectures, and transformer based ones. In the transformer family, available networks
have focussed on improving the performance, and thus are slower, but more accurate than
the PAUMER family of models. CNN based ones (say ICNet for Cityscapes) that have been
designed to be more efficient are competitive or better in speed than our models. However,
we have the unique ability to tune the mloU-throughput scores of our model without having
to retrain them.

5 Discussion

The improvement in images processed per second is obtained by reducing the number of
patches processed. This might not necessarily hold true in the case of networks with convolu-
tional layers interspersed, such as SegFormer [29] that uses convolution instead of positional
encoding, as convolution on unstructured sparse inputs is not highly optimized in CUDA
implementations. Thus, our method is not readily applicable to all transformer models.

In addition to architecture dependence, patch pausing’s performance maybe dependent
on the dataset itself. We attributed the difference between Cityscapes and ADE20K to inher-
ent dataset complexities by examining the performance of the auxiliary classifier; for ViT-Ti,
it reaches around 60% accuracy for ADE20K and 90% accuracy for Cityscapes. Examining
the possible relationship between patch pausing performance and the dataset difficulty [6]
might shed some light on this issue.

Citation
Citation
{Contributors} 2020

Citation
Citation
{Contributors} 2020

Citation
Citation
{Xie, Wang, Yu, Anandkumar, Alvarez, and Luo} 2021

Citation
Citation
{Ethayarajh, Choi, and Swayamdipta} 2022

10 COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION

Additionally, patch pausing assumes that a paused token is not important to the feature
computation of other tokens, as it will not contribute further to the attention computation to
refine the representation of other patches. Performance (mloU) indicates that it might have
little bearing, but this assumption needs to be investigated further.

Our method, while being input adaptive in choosing the patches to pause, chooses a fixed
proportion of them. This design is to exploit the batch level parallelism on GPUs. Choosing
the number of patches depending on the input batch has not been dealt with in this paper.

6 Conclusion

Our method, PAUMER, is a first step in the direction of post-hoc design for efficient inference
in semantic segmentation transformers. We do so by applying dissimilar amounts of com-
putation to various patches of an input image. Patches with high predicted auxiliary entropy
are processed further, whereas the rest of them are fed directly to the decoder skipping all the
intermediate computation. To run at a specified throughput (images per second), our method
offers the flexibility to choose an appropriate pause configuration, without having to retrain
the network.

Acknowledgements Evann Courdier and Prabhu Teja are supported by the “Swiss Center
for Drones and Robotics - SCDR” of the Swiss Department of Defence, Civil Protection and
Sport via armasuisse S+T under project No 050-38.

References

[1] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei,
Huaxia Xia, and Chunhua Shen. Twins: Revisiting the design of spatial attention in
vision transformers. Advances in Neural Information Processing Systems, 34, 2021.

[2] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei,
Huaxia Xia, and Chunhua Shen. Twins: Revisiting the design of spatial at-
tention in vision transformers. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
PS. Liang, and J. Wortman Vaughan, editors, Advances in Neural Informa-
tion Processing Systems Volume 34 pages 9355 9366. Curran Assomates Inc.,
2021. URL nht C
4e0928de075

"&.f‘(",//p aper/ 21/file/

[3] MMSegmentation Contributors. = MMSegmentation: Openmmlab semantic seg-
mentation toolbox and benchmark. https://github.com/open-mmlab/
mmsegmentation, 2020.

[4] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3213-3223, 2016.

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

https://proceedings.neurips.cc/paper/2021/file/4e0928de075538c593fbdabb0c5ef2c3-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/4e0928de075538c593fbdabb0c5ef2c3-Paper.pdf
https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation

COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION 11

[6]

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Trans-
formers for image recognition at scale. /CLR, 2021.

Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. Understanding dataset dif-
ficulty with V-usable information. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th In-
ternational Conference on Machine Learning, volume 162 of Proceedings of Ma-
chine Learning Research, pages 5988 6008. PMLR, 17-23 Jul 2022. URL https

'/proceedings.mlr.press/v162/ethayarajh22a.html.

Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry
Vetrov, and Ruslan Salakhutdinov. Spatially adaptive computation time for residual
networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1039-1048, 2017.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dy-
namic neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1-1, 2021. doi: 10.1109/TPAMI.2021.3117837.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax. arXiv preprint arXiv:1611.01144, 2016.

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-deep networks: Under-
standing and mitigating network overthinking. In International conference on machine
learning, pages 3301-3310. PMLR, 2019.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz
Khan, and Mubarak Shah. Transformers in vision: A survey. ACM Comput Surv., dec
2021. ISSN 0360-0300. doi: 10.1145/3505244. URL https doi.org/10.
1145 244,

Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
40134021, 2016.

Xiaoxiao Li, Ziwei Liu, Ping Luo, Chen Change Loy, and Xiaoou Tang. Not all pixels
are equal: Difficulty-aware semantic segmentation via deep layer cascade. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages
3193-3202, 2017.

Youwei Liang, Chongjian GE, Zhan Tong, Yibing Song, Jue Wang, and Pengtao Xie.
EVit: Expediting vision transformers via token reorganizations. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/
forum?id=BjyvwnXXVn_.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted win-
dows. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), 2021.

https://proceedings.mlr.press/v162/ethayarajh22a.html
https://proceedings.mlr.press/v162/ethayarajh22a.html
https://doi.org/10.1145/3505244
https://doi.org/10.1145/3505244
https://openreview.net/forum?id=BjyvwnXXVn_
https://openreview.net/forum?id=BjyvwnXXVn_

12

COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

Dmitrii Marin, Jen-Hao Rick Chang, Anurag Ranjan, Anish Prabhu, Mohammad
Rastegari, and Oncel Tuzel. Token pooling in vision transformers, 2022. URL
https://openreview.net/forum?id=EGtUVDmM991w.

Bowen Pan, Yi fan Jiang, Rameswar Panda, Zhangyang Wang, Rogério Schmidt Feris,
and Aude Oliva. la-red2: Interpretability-aware redundancy reduction for vision trans-
formers. In NeurlPS, 2021.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey
Dosovitskiy. Do vision transformers see like convolutional neural networks? In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances
in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=G18FHfMVTZu.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh.
Dynamicvit: Efficient vision transformers with dynamic token sparsification. In Ad-
vances in Neural Information Processing Systems (NeurlPS), 2021.

Andreas Steiner, Alexander Kolesnikov, , Xiaohua Zhai, Ross Wightman, Jakob Uszko-
reit, and Lucas Beyer. How to train your vit? data, augmentation, and regularization in
vision transformers. arXiv preprint arXiv:2106.10270, 2021.

Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Trans-
former for semantic segmentation. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 7262-7272, 2021.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A
survey. arXiv preprint arXiv:2009.06732, 2020.

Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. Branchynet: Fast inference
via early exiting from deep neural networks. 2016 23rd International Conference on
Pattern Recognition (ICPR), pages 2464-2469, 2016.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablay-
rolles, and Herve Jegou. Training data-efficient image transformers & distillation
through attention. In International Conference on Machine Learning, volume 139,
pages 10347-10357, July 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Thomas Verelst and Tinne Tuytelaars. Dynamic convolutions: Exploiting spatial spar-
sity for faster inference. In Proceedings of the ieee/cvf conference on computer vision
and pattern recognition, pages 2320-2329, 2020.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong
Lu, Ping Luo, and Ling Shao. Pyramid vision transformer: A versatile backbone for
dense prediction without convolutions. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 568-578, 2021.

https://openreview.net/forum?id=EGtUVDm991w
https://openreview.net/forum?id=Gl8FHfMVTZu
https://openreview.net/forum?id=Gl8FHfMVTZu

COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION 13

[29]

(30]

(31]

(32]

[33]

[34]

[35]

[36]

Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping
Luo. Segformer: Simple and efficient design for semantic segmentation with trans-
formers. Advances in Neural Information Processing Systems, 34, 2021.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. DeeBERT: Dynamic
early exiting for accelerating BERT inference. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pages 2246— 2251 Online, July
2020. Association for Computational Llngulstlcs URL https://www.aclweb.
org/anthology/2020.acl-main.204.

Weijian Xu, Yifan Xu, Tyler Chang, and Zhuowen Tu. Co-scale conv-attentional image
transformers. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 9981-9990, 2021.

Hongxu Yin, Arash Vahdat, Jose Alvarez, Arun Mallya, Jan Kautz, and Pavlo
Molchanov. A-ViT: Adaptive tokens for efficient vision transformer. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable
neural networks. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=H1gMCsAgY7.

Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang,
Yanwei Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr, et al. Rethinking semantic
segmentation from a sequence-to-sequence perspective with transformers. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pages
6881-6890, 2021.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Tor-
ralba. Scene parsing through ade20k dataset. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 633-641, 2017.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei.
Bert loses patience: Fast and robust inference with early exit. Advances in Neural
Information Processing Systems, 33:18330-18341, 2020.

https://www.aclweb.org/anthology/2020.acl-main.204
https://www.aclweb.org/anthology/2020.acl-main.204
https://openreview.net/forum?id=H1gMCsAqY7

