
14 COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION

Supplementary Sections

Appendix A Pseudocode for Patch Pauser and Assembler

In Algorithm 1, we present pseudo-code for both patch pausing mechanism and patch as-
sembler. The code isn’t meant to be functional but only for illustrative purposes. Comments
describe the functionality.

Algorithm 1 Patch Pauser and Assembler Pseudocode

def patch_pauser(tokens, pause_ratio, keep_indices, paused_tokens):

tokens (Xl) refers to current set of tokens being processed.
Note that this might not be the total number of tokens, as one
or more patch pausing stages could have happened.

pause ratio is τ, pausing proportion

keep_indices, paused_tokens are temporary arrays to store
details for assembling (see below).

_, total_tokens, _ = tokens.shape
to_process_count = N - int(pause_ratio * N)

Compute aux entropy of tokens
aux_prediction = auxiliary_classifier(tokens)
probs = aux_prediction.softmax(dim=-1)
entropy = compute_entropy(probs)

Instead of sorting, we use topk. This is faster on GPU.
topk_inds = entropy.topk(to_process_count)
kept_tokens = tokens[:, topk_inds]

keep_indices.append(topk_inds)
paused_tokens.append(tokens) ## This is X ′

l

return kept_tokens ## This is Xl+1

def patch_assembler(X_L, paused_tokens, keep_indices):
X_L (XL) refers to the final feature representation at the end of the
encoder. One or more stages of pausing have occurred before this.
X_L is of the shape BxN'xD.

paused_tokens: the feature representations of the tokens prior to
removing the paused ones.

keep_indices: The indices of the argsort of the auxiliary decoders'
entropy.
for indices, tokens in zip(keep_indices[::-1], paused_tokens[::-1]):

tokens[:, indices] = X_L
X_L = tokens

return X_L

COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION 15

Appendix B Backbone details
In this paper, we use two transformer backbones: ViT-Ti(ny) and ViT-S(mall). We do not
experiment with ViT-B, ViT-L architectures, due to our computational resource constraints.
In Table 2, we describe the main architecture details of the ViT backbones.

Model Name Layers Embedding dim Heads Params

ViT-Ti 12 192 3 5.9M
ViT-S 12 384 6 22.5M

Table 2: ViT architectural details used

Appendix C Brief introduction to Segmenter
Segmenter [22] network ingests an input image I ∈RW×H×3 and assigns one of the K output
classes to each input pixel. From I, the model first extracts non-overlapping patches of size
P, creating a total of N = WH

P2 patches (also called tokens). Each of those patches are then

transformed using a linear embedding layer E : R3P2 → RD, giving a feature representation
X0 ∈ RN×D, as shown in Figure 2.

This feature representation is refined by processing through L transformer encoder layers
Tl (l ∈ [L]), where each transformer encoder layer consists of a multi-head self-attention
(MHSA) block followed by a two layers perceptron (FFN). The overall operation can be
represented as:

XL := TL ◦TL−1 ◦ · · · ◦T1 ◦E(I) ∈ RN×D

Each Ti is residual in nature, i.e. Ti(x) = x+A(x) where A encompasses the self-attention
and the multi layer perceptron.

After L layers of such processing, the refined features XL are fed into a decoder MD. The
paper investigated two kinds of decoders: (a) a linear decoder that takes in the features in
XL ∈ RN×D and produces logits ∈ RN×K using a 1× 1 convolution, (b) a mask transformer
which learns K class embeddings that are jointly processed with XL through several trans-
former encoder layers (à la Ti), and produces a logits ∈ RN×K as a dot product between
the features and the learned class embeddings. The output of either decoder is reshaped to
RW

P ×H
P ×K , and then bilinearly upsampled to produce a logit map of size W ×H ×K. A soft-

max layer is used to obtain a categorical distribution over the labels for every pixel. All the
layers, E, Ti, MD are trained using the standard cross entropy loss.

Appendix D Patch pausing’s limitations
In the main paper, we investigated pausing up to three times in the network. It is indeed
tempting to pause at more layers, but this entails two additional costs: first to compute the
entropy and rank the patches, and then the patch assembly as detailed in Appendix A. These
costs are (ideally) off-set by the reduction in number of patches processed.

To illustrate this further, let us take the case of our experiment with ViT-T backbone
(with 12 layers). In this experiment, we are interested in how the pausing patterns affect the

Citation
Citation
{Strudel, Garcia, Laptev, and Schmid} 2021

16 COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION

0 1 2 3 4 5

layers where tokens are paused

400

600

800

1000

1200

1400
Im

ag
es

/s
ec

on
d

#Tokens paused

0

409

655

802

890

943

Pause@3,3-5,3-5-7

Pause@4,4-7,4-7-10

Figure 6: Evolution of the throughput with the number of layers using patch pausing.

throughput computed in images processed per second. To simplify the analysis, we assume
that we pause a fixed proportion τ = 0.4.

In Figure 6, we show the distribution of throughput (in images/sec) vs the number of
layers we pause tokens at. We use a box-plot where horizontal lines indicates quartiles. For
each value k on the x-axis, there are

(12
k

)
pause configurations.

Consider the case of pausing once. In this case, not all configurations of pausing are
useful; pausing too late may in fact be slower than the baseline of not pausing at all, as it
incurs an additional cost of auxiliary decoding and patch re-assembling that may offset the
time gain of not processing some patches. This trend is visible on Figure 6 and holds even
as the number of layers to pause at increases.

We now focus on two cases of pausing: pausing after layers 3, (3, 5), (3, 5, 7) and 4,
(4, 7), (4, 7, 10). This two configurations are plotted as lines on Figure 6. We see clearly
that pausing more has benefits in number of images processed, but that this benefit can
quickly plateau if we pause at later layers of the network. Additionally, this analysis does not
consider the mIoU at all. Indeed, while pausing early-on and at many layers is tempting, the
drop in mIoU becomes too high for those pause configurations to be useful (see Figures 4a
and 4b). Thus the primary limitation is posed by the drop in mIoU rather than throughput.

Appendix E Influence of the training pause ratio τl − τh

In Figure 7, we plot the mIoU of different pause configurations as a function of the through-
put for different values of the range of the pause ratio τl − τh introduced in Section 2.2. We
see that the results for various train pause ranges is relatively stable for low amounts of infer-
ence pausing ratios. Segmenter’s standard deviation (over 3 runs) is 0.35%, and we see that
the absolute difference in the performance at a given IMPS is about 0.5%. This, however,
changes when the amount of pausing increases (each colored curve’s right corners), when the
performance difference is higher (≈ 1%). More aggressive pausing at training seems benefi-
cial (0−0.9 performs the best). However, as a middle ground to the multiple configurations
investigated, we use 0.2−0.8 for all our experiments.

COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION 17

500 600 700 800

Images/sec

70

72

74

m
Io

U

Backbone = ViT-Ti Pause locations

5

7

3, 5, 7

τl − τh
0.0− 0.8

0.0− 0.9

0.2− 0.8

0.2− 0.9

Figure 7: mIoU vs throughput for different values of the range of the pause ratio τl − τh
introduced in Section 2.2.

Appendix F Trading off mIoU for higher throughput

We present results for trading off mIoU for throughput. Specifically, we take all our runs
(mIoU vs IMPS) data, and fit a linear spline, and use the resultant function to predict the
mIoU for 8 intermediate IMPS within the range for which we have experimental results for
ViT-Ti in Figure 4a. This is to illustrate that we can choose a pause configuration that fits
our run-time requirements (IMPS), and that it works with the performance specified here.

Backbone

ViT-S
210 im/s

Images / second 252 276 300 325 349 373 397 421

mIoU of PAUMER 77.04 76.96 76.89 76.41 76.17 74.89 73.60 71.11
Diff to Segmenter -0.03 -0.12 -0.19 -0.66 -0.90 -2.18 -3.47 -5.96

mIoU of RP 76.68 76.08 75.77 74.79 73.32 70.75 67.60 62.64
Diff to Segmenter -0.39 -0.99 -1.30 -2.28 -3.75 -6.32 -9.47 -14.44

ViT-Ti
424 im/s

Images / second 508 557 605 654 702 751 799 847

mIoU of PAUMER 73.42 73.35 73.23 72.91 72.76 72.37 70.99 70.58
Diff to Segmenter -0.42 -0.50 -0.61 -0.94 -1.09 -1.48 -2.86 -3.27

mIoU of RP 72.59 71.96 71.35 70.64 69.56 68.66 65.07 64.98
Diff to Segmenter -1.26 -1.89 -2.50 -3.20 -4.28 -5.19 -8.78 -8.87

Table 3: Trading off mIoU for speed. In Section 4.2, we showed the performance of mIoU
for 50%, and 100% increase in IMPS. Here we show numbers for a finer grid of IMPS, up
to doubling of IMPS.

Appendix G Influence of the auxiliary loss weight λ

In Figure 8, we plot the mIoU of different pause configurations as a function of the through-
put for different values of the auxiliary loss weight λ introduced in Section 2.2. We can see
that increasing λ pushes the network to be more robust to token-pausing but leads to lower
performance when pausing fewer tokens. Thus, λ can be tuned depending on the use-case
to favor either pausing lesser or a larger number of tokens.

18 COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION

500 600 700 800

Images/sec

68

70

72

74

m
Io

U

Backbone = ViT-Ti Pause locations

5

7

3, 5, 7

Loss weight λ

0.01

0.1

1.0

Figure 8: mIoU vs throughput for different values of the auxiliary loss weight λ introduced
in Section 2.2. Lower values of λ lead to better performance when pausing few tokens but
worse performance when pausing more, and conversely for higher values of λ . Our chosen
value of λ = 0.1 is a trade-off that can also be modified depending on the use-case.

Appendix H Interplay of Pause location and Pausing
proportion τ

We showed the results for some configurations in Table 1. In this section, we study the
interplay between pause location and pause proportion τ . In Figure 9, we show a sweep over
pause configrations. For each layer, we choose 20 pause proportions in (0,1). It is apparent
that dropping at a later layer results in lesser drop in mIoU but also does not result in a large
gain in IMPS. Thus depending on the desired run-time, one can choose a pause location and
pause proportion that gives the required performance.

500 600 700 800 900 1000 1100 1200

Images/sec

66

68

70

72

74

m
Io

U

Pause locations

2

3

4

5

6

7

8

9

Figure 9: Pausing once at various layers for various pause proportions for ViT-Ti on
Cityscapes. We see that the highest gains in IMPS are achieved by dropping in earlier layers.

To examine this further, we plot the performance of pausing twice in Figure 10. Similarly
to the case of pausing once, here we sweep over 10 thresholds for each location, thereby
generating 100 configurations for a given tuple of layers. For those 100 configurations, we
plot the pareto front of performance in Figure 10. We focus on the first pausing layer also,
as it has a larger influence on the IMPS gain. We can see that pausing at earlier layers leads
to a higher increase in IMPS, that pausing small proportions at these layers leads to slightly

COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION 19

higher drop in mIoU than pausing a higher amount in later layers.

550 600 650 700 750 800 850 900

Images/sec

70.0

70.5

71.0

71.5

72.0

72.5

73.0

73.5

74.0
m

Io
U

Pause at

2, 4

2, 5

2, 6

2, 7

3, 5

3, 6

3, 7

4, 6

4, 7

5, 7

First Pause

2

3

4

5

Figure 10: Pareto front of pausing at two layers for ViT-Ti on Cityscapes.

Appendix I Using Early Exit at test time

600 800 1000
Images/second

69

70

71

72

73

m
Io

U

Backbone=ViT-Ti

300 400 500
Images/second

73

74

75

76

77

Backbone=ViT-S Pause locations

3

5

3, 5

3, 5, 7

Early exit

False

True

400 500 600 700 800
Images/second

25

30

35

40

m
Io

U

Backbone=ViT-Ti

300 400
Images/second

30

35

40

45
Backbone=ViT-S Pause locations

3

5

3, 5

3, 5, 7

Early exit

False

True

Figure 11: Comparison when segmenting with and without early exit at test time on
CityScapes and ADE20K.

In Figure 11, we study the use of early exit on a trained PAUMER. Early exit (see works in
Section 3) refers to stopping processing of an input once it is deemed to have been processed
enough. In our method, we pause tokens, i.e. we stop processing a token by the encoder, and
feed it to the decoder to predict the segmentation label. Here, we compare it with directly
using the predictions of the auxiliary decoder itself, without stopped tokens being processed
by the main decoder. PAUMER can be run with or without early-exit depending on the
task, and using early exit on a trained Segmenter is straightforward as it does not need any

20 COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION

retraining due to the use of auxiliary decoders. For the same pausing configurations as in
Figure 4a, a network with early exit runs at a higher throughput with less FLOPs by design,
but it may run with a lower mIoU. On Figure 11, we see that for Cityscapes, it is beneficial
to use PAUMER with early exit. This finding might not hold in general, as a complex mask
decoder maybe needed for different datasets.

Appendix J Comparing SETR, Segmenter, EarlyExit
using Segmenter

200 400 600 800 1000
Images/sec

70

72

74

76

78

m
Io

U

Cityscapes

Method

Paumer

Paumer-Ti (SETR)

Early Exit

Model Size

ViT-Ti

ViT-S

Figure 12: We compare PAUMER on Segmenter, on SETR, and using an early exit variant
of PAUMER on Segmenter. Early exit fares better than PAUMER on Cityscapes. This may
be attributable to the dataset, as Cityscapes might not need more complex mask decoder for
accuracy.

In Appendix I we showed the results of early exit. Here we examine the best perfor-
mances obtained for each throughput across pause configurations. We estimate this by com-
puting the skyline queries. We see that early exit performs consistently better on Cityscapes.

Additionally, we implement our patch pausing strategy, PAUMER, on the network archi-
tecture SETR [34]. SETR’s performance drops off more rapidly than Segmenter based patch
pausing. Note that we adapt SETR’s PUP decoder to use it with a ViT-Tiny backbone. In par-
ticular, we reduce the number of channels of the decoder to 192, the number of convolutions
in the decoder from 4 to 2 and the upscale factor from 2 to 4.

Appendix K Importance of task specific pretraining

In Figure 13, we study importance of initialization. We compare ViT-Ti pretrained on
Cityscapes (task specific), and pretrained on ImageNet (generic) and study their impact on
performance. When using a generic pretrained model, our training with PAUMER is increased
to 160K iterations instead of 80K. It is apparent that using a task specific pretrained model
brings a relatively consistent benefit in this context.

Citation
Citation
{Zheng, Lu, Zhao, Zhu, Luo, Wang, Fu, Feng, Xiang, Torr, etprotect unhbox voidb@x protect penalty @M {}al.} 2021

COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION 21

500 600 700 800 900
Images/second

70

71

72

73

m
Io

U

Backbone=ViT-Ti
Pause locations

3

3, 5

3, 5, 7

Task specific-initialize

False

True

Figure 13: Importance of initialization for PAUMER. Task specific initialization benefits per-
formances. We train ViT-Ti PAUMER: solid lines are from ImageNet pretrained backbones,
dashed lines are from Cityscapes pretrained Segmenters. Each marker is a configuration
from Table 1.

Appendix L Entropy as a measure of patch-pausing
In Section 2.1, we argued that entropy is a reasonable indicator of completion of processing.
For that, we used the illustration in Figure 3 to show the increase in separation of entropy
histograms for pixels predicted correctly and incorrectly. We expand that in Figure 14, to
analysing that to each class individually. The larger separation in entropy in the first few
layers of network in prevalent in large classes like road, building, vegetation, car. As seen in
Figure 1 too these larger classes are paused to gain IMPS. Smaller, rarer classes like train,
motorcycle, rider are tougher to learn and are unlikely to be paused (as evidenced by their
higher entropy).

22 COURDIER, TEJA, FLEURET: PAUMER FOR SEMANTIC SEGMENTATION

0

1

2

E
n

tr
op

y

Road Sidewalk Building

0

1

2

E
n

tr
op

y

Wall Fence Pole

0

1

2

E
n

tr
op

y

Traffic light Traffic sign Vegetation

0

1

2

E
n

tr
op

y

Terrain Sky Person

0

1

2

E
n

tr
op

y

Rider Car Truck

0

1

2

E
n

tr
op

y

Bus

1 3 5 7 9 11
Layer #

Train

1 3 5 7 9 11
Layer #

Motorcycle

1 3 5 7 9 11
Layer #

0

1

2

E
n

tr
op

y

Bicycle

Prediction

Correct

Incorrect

Figure 14: Entropy per layer for each class of Cityscapes. Continues Figure 3.

