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Abstract

Computed Tomography (CT) is an indispensable tool for the detection and assess-
ment of various medical conditions. This, however, comes at the cost of the health risks
entailed in the usage of ionizing X-ray radiation. Using sparse-view CT aims to mini-
mize these risks, as well as to reduce scan times, by capturing fewer X-ray projections,
which correspond to fewer projection angles. However, the lack of sufficient projections
may introduce significant ambiguity when solving the ill-posed inverse CT reconstruc-
tion problem, which may hinder the medical interpretation of the results. We propose a
method for resolving these ambiguities, by conditioning image reconstruction on differ-
ent possible semantic meanings. We demonstrate our method on the task of identifying
malignant lung nodules in chest CT. To this end, we exploit a pre-trained malignancy
classifier for producing an array of possible reconstructions corresponding to different
malignancy levels, rather than outputting a single image corresponding to an arbitrary
medical interpretation. The data-consistency of all our method reconstructions then fa-
cilitates performing a reliable and informed diagnosis (e.g. by a medical doctor).

1 Introduction
Computed tomography (CT) plays an important role in medical imaging with many applica-
tions, such as diagnosing various health conditions and devising appropriate treatment plans
[30, 44]. For recording CT data, the target (e.g. a patient) is projected with X-ray radia-
tion from various directions comprising half a circle around it, while a detector measures
the attenuated radiation at the other side of the target. Measures corresponding to all pro-
jections are then organized as an array termed sinogram, from which the CT image can be
reconstructed using different reconstruction methods.

However, the exposure of a patient to the ionizing X-ray radiation is known to present
significant health risks such as cancer. This fuels a substantial research effort for reducing
radiation exposure, for example by using sparse-view CT, where the target is radiated with
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(a) Reconstruction by FBP (b) Data Consistent Reconstructions (our approach)

Figure 1: Reconstruction ambiguity. Reconstruction methods such as Filtered Back Pro-
jection (FBP) [16] typically yield only one data-consistent output (a). However, there are
many possible reconstructions (b) that are consistent with the data term, but differ in their
pathological categorization, i.e. with respect to their malignancy. This ambiguity, which
increases when using sparse-view CT, is demonstrated here for p = 50 projection angles.

fewer projection angles, typically distributed uniformly around it [28]. Unfortunately how-
ever, reconstructing the CT image from the recorded sparse-view data becomes an underde-
termined problem, which often manifests itself as significant ambiguities in the tomographic
reconstruction process.

The reconstruction of a tomographic image x from a measured sinogram f captured using
p projection angles can be formulated as a linear inverse problem of the form

f = Rx+n, (1)

where R ∈ Rp·d×N corresponds to the discrete Radon transform, which computes p · d line
integrals through image x (with a total number of N pixels) along all projection directions1.
Here, d is the number of pixels in the one-dimensional X-ray detector and n ∈ Rp·d is some
additive noise. As the number of projection angles p decreases, the problem of recovering
image x in (1) becomes increasingly under-determined.

Over the years many methods attempted to tackle this challenge, typically producing a
reconstruction x̂ which strives to be as close as possible to the ground truth image x. How-
ever, due to the under-determined nature of the problem, there are many different valid im-
age reconstructions x̂ whose Radon transform Rx̂ matches the measured sinogram f . This
is demonstrated in Fig. 1 for the case of a lung nodule captured using p = 50 projection
angles. While all four reconstructed images on the right are consistent with the sinogram f
(satisfying 1

pd ∥ f −Rx̂∥2 < 3 ·10−5), their appearances, and more importantly their medical
interpretations vary dramatically, with an increasing level of malignancy from left to right.

In this paper we point out the ambiguity that is inherent to medical data reconstruction
and argue that enabling exploration of the space of consistent reconstructions, rather than
producing a single arbitrary image, is essential in medical applications. We propose the first
method to allow this, which enables exploring the range of possible image reconstructions
x̂ that are consistent with the measurement f , while potentially corresponding to different
pathological findings. Our method operates by optimizing for different solutions, whose
Radon transform matches with the measured sinogram while corresponding to semantically
different interpretations, obtained from a pre-trained CT image classifier. In particular, we
use gradient descend to minimize the data term induced by (1), as well as a term that en-
courages the resulting image x̂ to be classified into different malignancy levels by a classifier

1With a slight abuse of notations, we use x and f when referring either to the two-dimensional or to the column-
stacked versions of the target image and the recorded sinogram, respectively.

Citation
Citation
{Feldkamp, Davis, and Kress} 1984

Citation
Citation
{Kim, Anirudh, Mohan, and Champley} 2019



DRÖGE, BAHAT, HEIDE, MÖLLER: EXPLORABLE CT RECONSTRUCTION 3

that was trained to distinguish between malignant and benign tissues. We introduce techni-
cal novelties such as the use of an adversarially trained classifier and the sole use of energy
minimization for solution exploration, which is easier and typically more stable for train-
ing than, e.g., GAN frameworks. We demonstrate our method on the case of reconstructing
human lung CT images with pulmonary nodules, such that they correspond to various de-
grees of pathological malignancy while maintaining consistency with the measurements f .
Nonetheless, extending our approach to other use-cases, as well as to other medical imaging
modalities, would be fairly straight forward.

2 Related Work
We next provide a brief survey of both classical, as well as learning-based existing CT recon-
struction techniques, followed by some background regarding adversarial attacks on neural
networks, in the context of our use of a pre-trained classifier. Finally, we discuss existing
methods for sampling and exploring the solution space in a few image restoration inverse
problems, which are the closest to our work which aims to enable medically oriented explo-
ration in CT reconstruction.

2.1 CT Reconstruction
Classical Techniques For an infinite number of projection angles p, image x can be recov-
ered from a noise-free sinogram f (under some mild assumptions) using the inverse Radon
transform [35]. In practical settings however, where the target is projected from a discrete set
of p angles and the measurements are noisy, x cannot be perfectly reconstructed. One com-
monly used approach for approximating x is the Filtered Back Projection (FBP) [16] method,
which uses a discretized noise-suppressing approximation of the inverse Radon transform
and yields a single arbitrary output x̂ solving the inverse problem (1). This output typically
contains artifacts, especially in sparse-view CT, where p is small. To overcome this prob-
lem, many iterative approaches have been presented, that e.g. integrate sparse constrained
dictionary learning [43] or use means such as nonlocal regularizers [12] or Total Variations
(TV) regularization [21, 37, 38] to reduces artifacts.

In contrast to such classical techniques, we propose to use an energy minimization
method that includes a trained classification network, to generate a range of data-consistent
reconstructions, thus enabling access to the range of realistic solutions.

Learning-based Techniques Researchers have been applying neural networks for sparse-
view CT reconstruction since the turn of the millennium [32, 40, 42]. Some methods [23,
29, 46] proposed to apply post-processing to images reconstructed using FBP, while others
proposed to work in the wavelet domain [25] or use an encoder-decoder architecture [11].
Xia et al. [41] proposed a framework for tackling multiple geometries and radiation dose
levels. Another line of works was designed to support the iterative reconstruction scheme
[28], e.g. by using a neural network to perform projected gradient descend [19] or by taking
a primal-dual approach [1]. He et al. [20] proposed to learn a prior for reconstruction using
plug-and-play ADMM.

In contrast to the above works, our approach merely requires a classification (rather
than a reconstruction) network, and relies on an energy minimization method to explore
semantically different but similarly consistent reconstructions.
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2.2 Attacks and Stability of Neural Networks

Nowadays, although neural networks are being widely used with great success, they can be
vulnerable to adversarial attacks, where small changes in the input image were shown to
completely alter the prediction by the neural network. Since this was first discovered by
Szegedy et al. [39], intensive research was devoted to methods that either perform adversar-
ial attacks [6, 9, 45] or attempt to defend against them [17, 18, 34]. For instance, Goodfellow
et al. [17] showed experiments on adversarial training and proposed the Fast Gradient Sign
Method (FGSM) for improving robustness against adversarial attacks. An overview of ad-
versarial attacks and defenses can be found in [10, 15, 33].

Note that although our method involves optimizing over the reconstructed image x̂ to
achieve the desired prediction by a pre-trained classifier (similarly to adversarial attacks),
it does not entail any alteration of the recorded sinogram f , and instead operates on the
reconstructed image x̂ in a data consistent manner. This makes our method fundamentally
different from adversarial attacks, despite the mathematical similarity manifested in (2) - note
that set P of possible inputs to the classifier is unbounded, which is a significant difference
on the technical side as well. We emphasize that our method neither performs adversarial
attacks, nor does it protects against them.

2.3 Solution Space Exploration

Recently, some of the research efforts in the image restoration community were directed
toward expressing and examining the diverse space of valid solutions. Several methods pro-
posed different approaches for sampling the solution space in image restoration problems
such as denoising [26, 27], super-resolution [31], inpainting [14], deblurring [8] and more
[24]. Other methods go beyond randomly sampling the solution space, and develop tools to
enable users to explore it. These tools are typically tailored for a specific task, allowing a user
to, e.g., explore the solution space in image super-resolution [4, 7] or image decompression
[5], with the latter work exploiting a pre-trained digit classifier for automatically examining
the possible decodings corresponding to a compressed image of a numerical digit.

Our work aims to allow exploration (rather than just random sampling) of the space
of possible medical interpretations corresponding to a recorded sparse-view CT scan. To
the best of our knowledge, such active guidance techniques have not been considered in a
medical context before.

3 Explorable CT Reconstruction

Exploring Data Consistent Reconstructions The goal of our work is to provide medical
experts that are interpreting images for diagnostic purposes with a better understanding of
the actual information the recorded data contains about the object of interest. While our
idea extends to any property that can be captured by a classification (or scalar regression)
network, we exemplify our method by exploring the space of possible CT reconstructions of
nodules associated with different degrees of malignancy as predicted by a given classification
method. An overview of our method is depicted in Fig. 2. As a malignancy classifier, we
use a classification network Nθ : Rh×w → [0,1] pre-trained for classifying nodules in chest
CT. The network predicts the malignancy of a nodule from the region of interest xC , which
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Figure 2: Overview of the proposed approach. Loss function L is composed of two energy
terms E1 and E2, which take as input the Radon transform of the desired reconstruction x
and the output of a pre-trained classification network, respectively, as well as the desired
malignancy level m. The input of the classification network is a crop xC from image x.

is manually chosen and cropped from a CT image x around the nodule, as shown by the red
box in Fig. 1 (a).

Because we want to predict physically plausible, i.e., data consistent, solutions only, we
constrain our reconstructions to the solution space P := {x | 1

pd ∥Rx− f∥2 ≤ δ 2} of images
x whose sinogram Rx differs from the measured data f by a noise-level dependent constant
δ . To allow comparing reconstructions with different number of projection angles p, we
normalize the squared ℓ2 norm by 1/(pd) (approximating the L2 norm in function space
more realistically). Within P we explore possible solutions using a target malignancy level
m for our classification network Nθ by finding

min
x∈[0,1]N

Hε(Nθ (xC)−m) s.t. x ∈ P, (2)

where Hε is the Huber loss [22] with ε = 0.01, which we found to work best empirically,
being a trade-off between the ℓ1 and ℓ2 norms:

Hε(a) =

{
1
2 a2 for |a| ≤ ε,

ε ·
(
|a|− 1

2 ε
)
, otherwise.

(3)

While (2) could be optimized (at least locally) using a projected gradient descent ap-
proach, the projection is rather computationally intense such that we propose to instead con-
sider the regularized problem

min
x∈[0,1]N

1
pd

∥Rx− f∥2 +λHε(Nθ (xC)−m) (4)

with λ indicating a weighting of the malignancy prediction of interest. Please refer to the
Supp. material for a table summarizing all notations.
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Transformations Our goal is to produce realistically looking (rather than unnatural) CT
reconstructions corresponding to malignancy levels m. We therefore utilize transformed ver-
sions Tj(xC), where {Tj}J

j=1 is a set of natural image transformations like different rotations
and scalings, which do not affect the semantic interpretation of the image. This reduces the
chance of yielding an unrealistic xC that manages to “fool” the classifier Nθ , as we visualize
in the ablation study in the Supp. material, leading to the modified objective

x̂(m) = argmin
x∈[0,1]N

1
pd

∥Rx− f∥2

︸ ︷︷ ︸
=E1(x)

+λ1
1
J ∑

j
Hε(Nθ (Tj(xC))−m)+λ2TV (xC)︸ ︷︷ ︸

=E2(x)

, (5)

where we use notation x̂(m) to stress the dependency of the reconstructed x̂ on our explo-
ration parameter m. To further encourage smoothness, we add total variation (TV) regular-
ization [36] to our energy function.

Soft Cropping We empirically found that hard cropping x to obtain xC often results in
visible artifacts in x̂ around the cropping boundary. To encourage a smooth transition of the
crop to the remaining part of x̂, we attenuate the gradient of E2 in (5) with a Gaussian mask
G, so that modifications to the peripheral pixels of xC are attenuated, as we visualize in an
ablation study in the Supp. material. Our gradient descent update can be written as

xi+1 = xi − τ(∇E1(xi)+G⊙∇E2(xi)), (6)

where ⊙ denotes point-wise multiplication.

Training Suitable Classification Networks Modern image classification models can be
susceptible to adversarial examples - small perturbations in the input image that cause mis-
classification. To further encourage the reconstruction to be meaningful and realistic, and to
prevent slight imperceptible changes in x̂ from affecting the classification by Nθ , we utilize
adversarial training for classifier Nθ using the Fast Gradient Sign Method [17], thus making
the classifier more robust.

4 Numerical Experiments

4.1 Preparation
Data Set For our experiments, we use the Lung Image Database Consortium Image Collec-
tion (LIDC-IDRI) [3, 13], including over 1000 cases that were annotated by four radiologists
independently. There are 5 levels of grading, depending on how certain radiologists are that
the nodule is malignant (or benign). To create our training annotation, we averaged the an-
notated levels for each CT image, and discarded the data whose classification is the closest
to indeterminate (level 3), as it can be considered neither malignant nor benign.

From the remaining data, we extract those 2d slices that contain the annotated nodules
and get a training dataset of 244 scans with malignant nodules and 729 scans with benign
nodules. All CT images are normalized to a range of [0,1]. For optimizing (5), we use a
validation dataset containing a total of 100 scans with 50 malignant and 50 benign cases,
which was not used for training the classification network.
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(a) FBP (b) m = 0.0 (c) m = 0.1 (d) m = 0.2 (e) m = 0.3 (f) m = 0.5 (g) m = 1.0

Figure 3: Nodule reconstructions using FBP (a), and various degrees of malignancy with our
proposed approach in (b)–(g).

Classification Network To classify nodules of sparse-view CT reconstructions, we use
BasicResNet, since it has shown superior results for classifying the malignancy of nodules
in [2], by adapting their hyper-parameter settings (with minor changes) and training for 350
epochs using the Adam optimizer and a learning rate of 0.0005. All training input images
were normalized by subtracting their mean and dividing by their standard deviation.

4.2 Solution Space Exploration
In all our experiments described below, we optimize (5) along with the Gaussian damping
of (6) with a variance of 11, using gradient descent with a learning rate of 1.0 and λ1 = 1.0
and λ2 = 0.01 for 50000 iterations, with the stopping criterion triggered when the energy
no longer decays. To start our method with an x that already results in low energy, we
beforehand calculated the FBP (xFBP) of our input and minimized E1 for 600 iterations using
gradient descent with a learning rate of 0.0005 and a momentum of 0.9. The choice of
parameters were obtained empirically. In each optimization step, we normalize the input xC
of Nθ with a fixed mean and variance, taken from the FBP reconstruction.

Realistic Solution Space We explore the space of underdetermined CT reconstructions,
with p = 50 projection angles, and consider reconstructions of different malignancies, which
we control by setting the variable m in (5). Fig. 3 shows an example of reconstructions of
a nodule for multiple levels of malignancy, starting from a benign (m = 0.0) to a malignant
nodule (m = 1.0) and several values in between. The prediction of the nodule reconstructed
with FBP (a) is classified as benign with N(xFBP

C ) = 0.2. It can be seen that in most extreme
cases and especially the cases with strong deviation from the predicted malignancy towards
increasing malignancy, artifacts appear in the nodule, which here appears as black areas
around the nodule. From m = 0.5 onward they become visually unrealistic. Numerically we
found that rather small changes of m differing by the prediction on the FBP reconstruction
by around ±0.1 yields realistic images while still causing significant changes in the appear-
ance of the nodule, see Fig. 3, (c)–(e). In the following, we refer to the prediction of the
reconstruction by FBP as the original malignancy.

Investigation on the Residuals An important question is how much the nodules can change
in their appearance and malignancy while still maintaining data consistency. Because this
has to depend on the number of projections recorded in the sinogram, we consider recon-
structions with 50, 100, 200, and 360 angles and optimize (5) towards malignant and benign
reconstructions. Exemplary reconstructions with rather large variations of the malignancy
level m are illustrated in Fig. 4 for varying numbers of projection angles p. One can see
that fewer projections tend to allow larger variations in the reconstructions, e.g. allowing
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Sample 1 Sample 2 Sample 3
m = 0.2 m = 0.8 m = 0.2 m = 0.8 m = 0.2 m = 0.8

p = 50

p = 100

p = 200
Nθ (xFBP

C ) = 0.94 Nθ (xFBP
C ) = 0.2 Nθ (xFBP

C ) = 0.11

Figure 4: Examples of data consistent reconstructed nodules for a varying number of projec-
tion angles p for m = 0.2 and m = 0.8, such that the reconstructed nodules are categorized
by the classification network Nθ into different classes with respect to their malignancy.

the nodule to almost disappear for p = 50 projections in Sample 3. For a large number
of p = 200 projections strong deviations from the original malignancy Nθ (xC) can lead to
severe artifacts that do not correspond to a medically realistic reconstruction anymore.

The severe visual artifacts raise the question to what extent such reconstructions even
remain data consistent. Therefore, we analyse the behaviour of the residual r = |Rx− f |, that
shows the pointwise distance of the sinogram of the reconstruction Rx and the measurement
f . It is visualized in Fig. 5 for each aforementioned sample for the malignancy that is oppo-
site to its original classification. Here, the red marking indicates the area in the residual that
has an influence on the nodule in the reconstruction. We can see that a modification in the
nodule (within the red marking) is easier to recognize the more projection angles were used
for the reconstruction. For fewer projection angles, such as p = 50, it is possible to modify
the nodule to another malignancy without any sign of the exploration in the residuum.

To quantify this effect we compute the mean squared error of all points insight the red
track of each nodule as well as outside of it, and denote them by ei and eo, respectively. The
plots on the top of Fig. 5, show the difference between the interior and the exterior error (ei−
eo) as a function of the malignancy we were able to enforce on the reconstruction. As we
can see, small values of p allow to not only access the entire range of malignancies without
compromising data fidelity, but also do not lead to any recognizable difference between
the errors of rays that pass through the nodule and those that do not. As p increases, the
differences of errors for Sample 1 and Sample 2 increases for malignancies in opposite to
their original classification. In contrast, the plot of Sample 3 shows that there also exist
cases, where the difference of errors is not monotone in its classification result.

To go beyond the exemplification on three particular samples, Table 1 shows measure-
ments on the growth of the error and the on the malignancy prediction, when optimizing
towards the extrema of malignancy Nθ (xC) = 1 or Nθ (xC) = 0 for the validation dataset of
100 reconstructions. Here we differentiate between two sets of reconstructions: those whose
corresponding reconstruction by FBP are classified as benign SB = {x|N(xFBP

C ) < 0.5} and
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0.0 0.2 0.4 0.6 0.8 1.0
Nθ(xC)

0.0

0.5

1.0

1.5
(e

i−
e o
)

×10−2

(a) Sample 1

0.0 0.2 0.4 0.6 0.8 1.0
Nθ(xC)

0.0

0.5

1.0
×10−3

(b) Sample 2

0.0 0.2 0.4 0.6 0.8 1.0
Nθ(xC)

0.0

0.5

1.0

×10−3
p=50
p=100
p=200
p=360

(c) Sample 3

Figure 5: Residual and error measurement for three examples of data consistent recon-
structed nodules for a varying number of projection angles p. Top: difference of the in-
terior and exterior error when optimized towards different malignancies. Bottom: Pointwise
residual (in sinogram space) for different p, when optimizing originally benign samples to
become malignant and vice versa. The values of the residual are clipped at 0.1.

those whose are classified as malignant SM = {x|N(xFBP
C )≥ 0.5}. Table 4 shows results for

exploring reconstruction in the direction of the classification opposite to the classification
obtained on the classical FBP reconstruction. We compare their mean data consistency loss,
their mean prediction, and their mean distance of the interior and the exterior error (ei − eo)
for each number of projection angles p. As we can see, the data consistency loss as well
as the distance of the interior and the exterior error increase with increasing p. This applies
especially when optimizing the originally malignant classified nodules towards a benign
classification. Note also, that large values of p make it impossible to reach extreme values
of Nθ (x) in our setting. Finally, the widely used FBP reconstructions lead to a reconstruc-
tion error that is at least four orders of magnitude higher than all explorable reconstructions.
Thus, trusting a FBP reconstruction would mean that an extreme range of possible alternate
solutions would have to be considered as well. For the sake of completeness, we included
a more detailed table in which we optimize malignancy prediction towards a small and a
large value for each set and provide standard deviations for each of the results in the Supp.
material.
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set p 1
pd ∥Rx− f∥2 ·105 Nθ (x) (ei − eo) ·105

optimizing for
small Nθ

SM

50 2.09 0.003 −1.50
100 3.36 0.099 −1.63
200 30.16 0.423 309.01
360 62.15 0.526 658.71

optimizing for
large Nθ

SB

50 5.58 0.960 −3.73
100 3.30 0.957 −1.26
200 5.82 0.922 9.40
360 13.45 0.802 86.85

FBP SB ∪SM

50 5.23 ·105 0.54 −1.00 ·105

100 2.73 ·105 0.55 −1.72 ·105

200 2.52 ·105 0.55 −1.81 ·105

360 2.52 ·105 0.55 −1.82 ·105

Table 1: Mean data consistency loss, network prediction and distance between the interior
and exterior error (ei − eo) of the residual r for originally benign nodules x ∈ SB and ma-
lignant nodules x ∈ SM optimized towards the most extreme opposite malignancies. For
comparison the last rows show the results of the reconstructions by FBP.

5 Conclusion
In our paper we proposed a method for exploring the solution space of ambiguous sparse-
view CT reconstruction on the classification of lung nodules in CT, by conditioning the
reconstruction with a pre-trained classification network. We have shown the extent to which
we can alter the perceived malignancy of lung nodules and analyzed the range of alterations
for different levels of ambiguity in CT images. While current methods aim at predicting the
most realistic reconstruction (typically derived from a large set of training data), we argue
that an exploration towards the pathologically most and least concerning reconstruction is
significantly more informative to a medical expert interpreting the images: A healthy-looking
result is a stronger indication of a healthy patient when obtained by optimizing for the most
pathologically concerning image, compared to when optimizing for the most realistic one.
This holds true particularly in a medical context where great caution needs to be taken of
any possible bias arising from the set of training images. We hope this work could set the
foundations for developing and experimentally validating comprehensive frameworks that
could be used in practice to assist medical patient diagnoses.
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