

Reconstruction by Filtered Backprojection

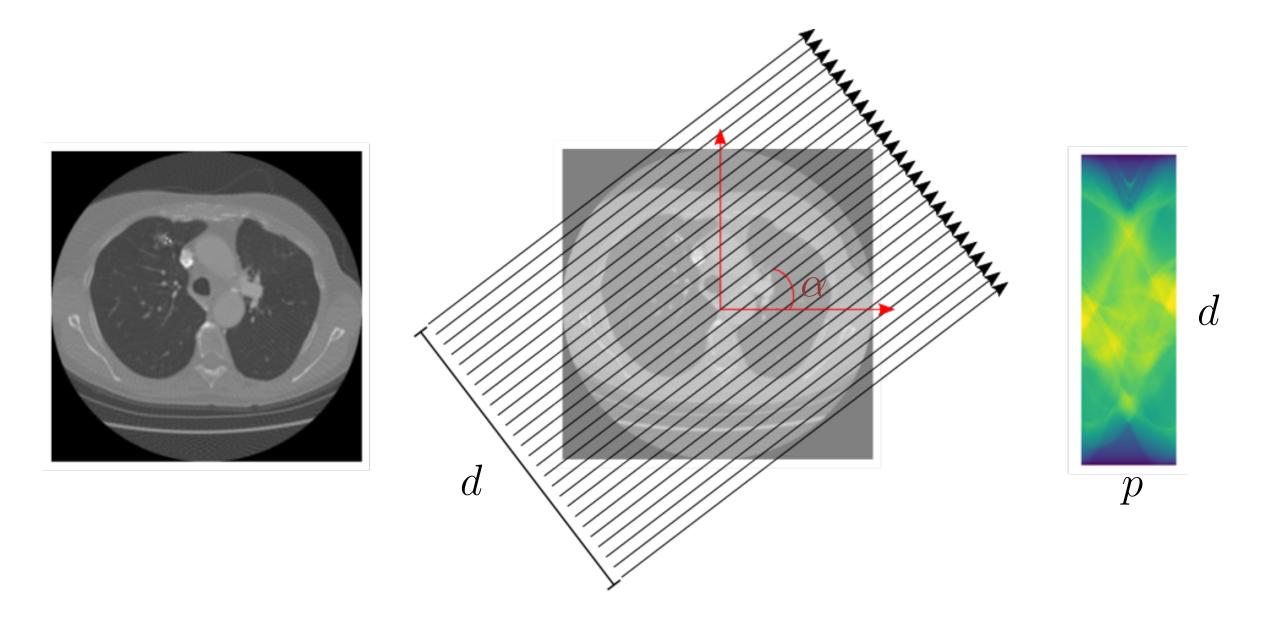
Data Consistent Reconstructions (our approach)

Motivation & Idea

Realistic Solution Space

Computed Tomography (CT):

✓ Diagnosing various health conditions and devising treatment plans
 ✗ Health risks such as cancer due to exposure to the X-ray radiation

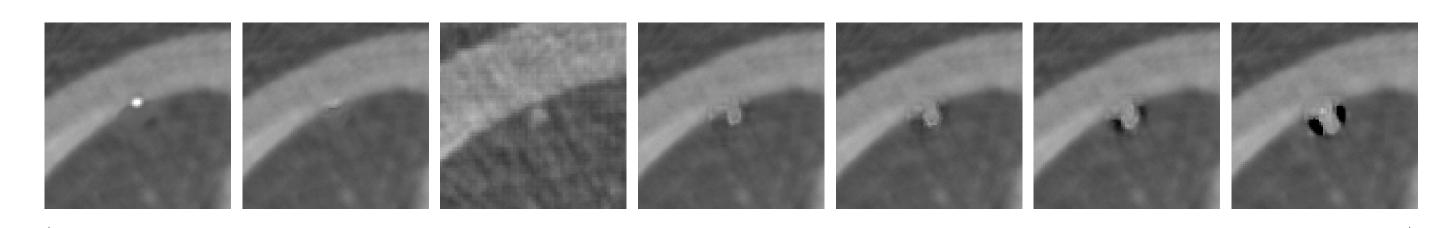


- Sparse-view CT: the target is radiated with fewer projection angles
- Reconstruction of a tomographic image \boldsymbol{x} from a measured sinogram f

f = Rx + n,

- Exploration of the space of consistent reconstructions
 - Radon transform matches with the measured sinogram
 - Corresponding to semantically different interpretations, obtained from a prostrained CT image classifier

Reconstructions of different malignancies (controlled by m)
Space of underdetermined CT reconstructions (p = 50)



decreasing mFiltered Back-projection

increasing m

Strong changes of m: visually unrealistic

- Small changes of m: realistic images & significant changes in the appearance of the nodule

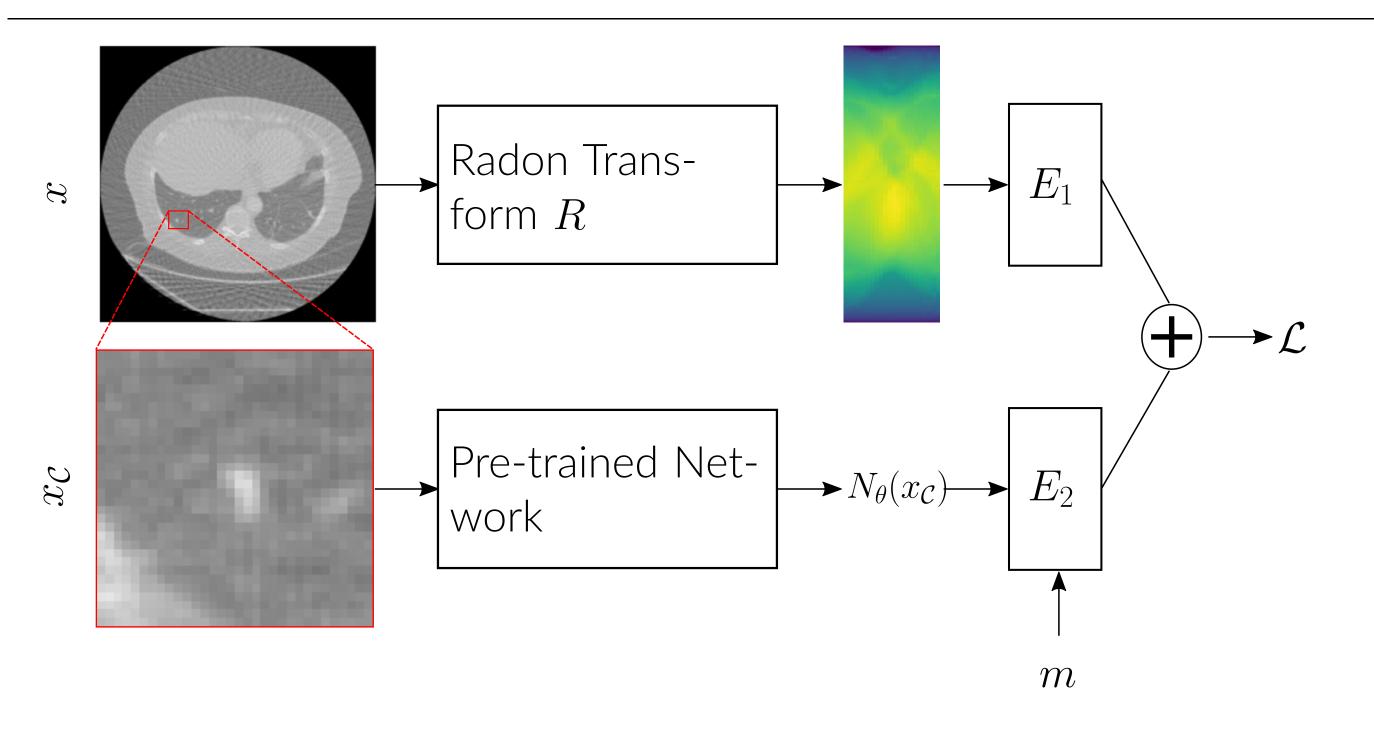
Investigation on the Residuals

 Reconstruction: Tendency to allow larger variations in the reconstruction for fewer projection angles. For many projections, strong deviations can lead to severe artifacts.

$$m = 0.2$$
 $m = 0.8$ $m = 0.2$ $m = 0.8$ $m = 0.2$ $m = 0.8$

pre-trained CT image classifier

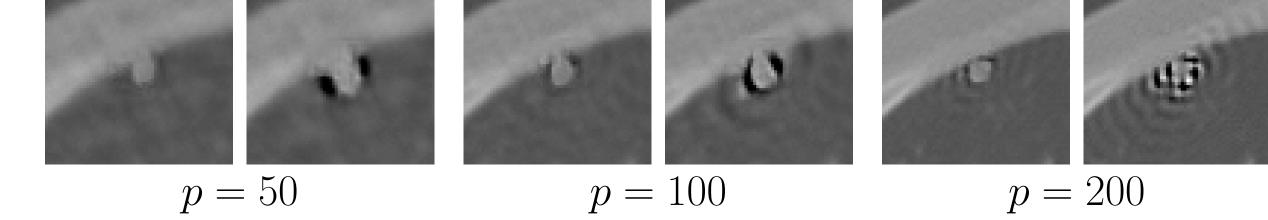
Method



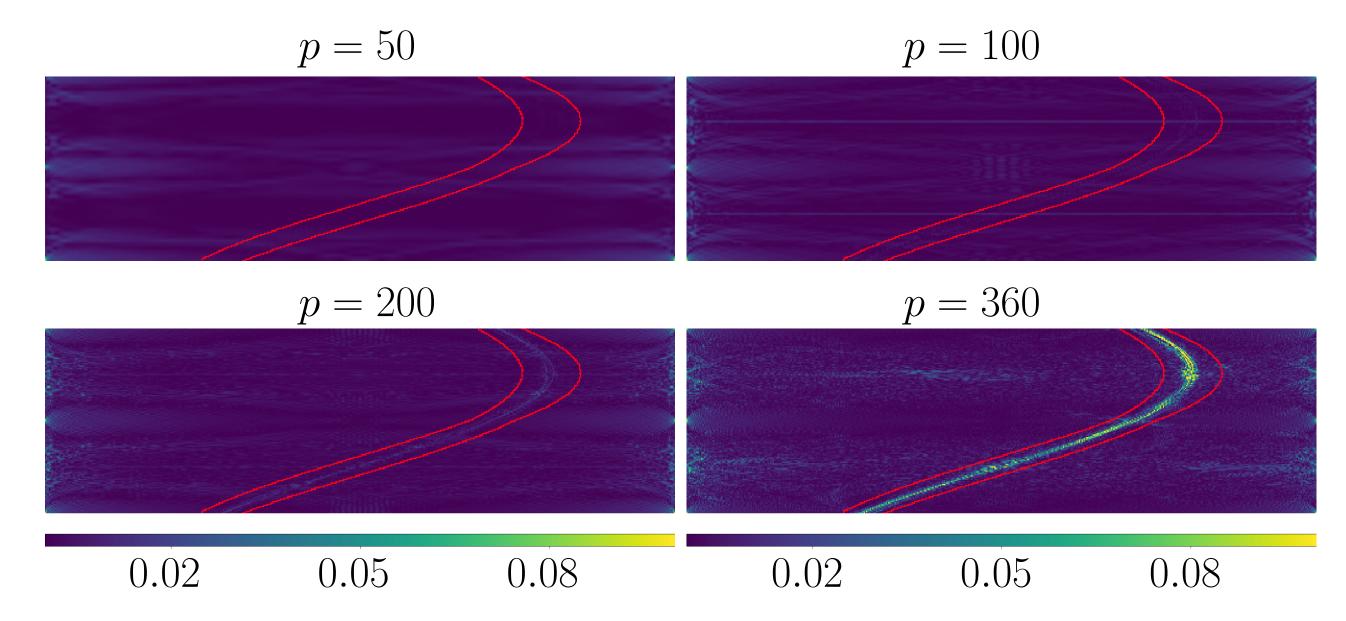
Data Consistent Reconstruction:

$$\min_{x \in [0,1]^N} \frac{1}{pd} \|Rx - f\|^2 + \lambda H_{\epsilon}(N_{\theta}(x_{\mathcal{C}}) - m)$$

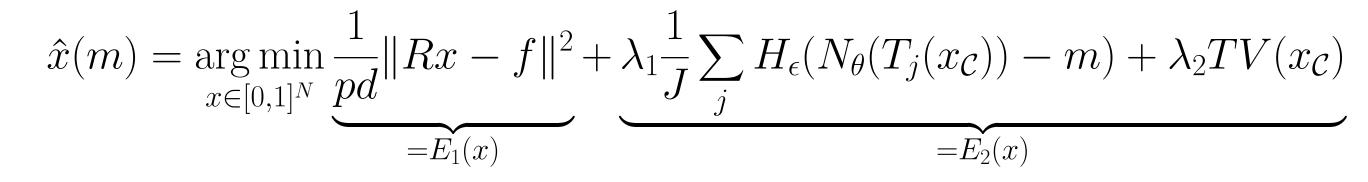
• Transformations: Utilize transformed (scaling, rotation) versions $T_j(x_c)$, to produce realistically looking CT reconstructions



 Residual: A modification in the nodule is easier to recognize for more projection angles. For fewer projection angles it is possible to modify the nodule without any sign of the exploration.



- Data consistency loss & the distance of the interior and the exterior error $(e_i - e_o)$ increase with increasing number of angles p



 Soft Cropping: To avoid visible artifacts in around the cropping boundary, the gradient descent update can be written as

 $x^{i+1} = x^i - \tau(\nabla E_1(x^i) + G \odot \nabla E_2(x^i))$

- Training Suitable Classification Network: Training of a classification network N_{θ} adversarially using the Fast Gradient Sign Method

CT data taken from Armato III, Samuel G., et al. "The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans." Medical physics 38.2 (2011): 915-931.

	set	p	$\frac{1}{pd} \ Rx - f\ ^2 \cdot 10^5$	$N_{\theta}(x)$	$(e_i - e_o) \cdot 10^5$
optimizing for small N_{θ}	$S^{\mathcal{M}}$	50	2.09	0.003	-1.50
		100	3.36	0.099	-1.63
		200	30.16	0.423	309.01
		360	62.15	0.526	658.71
optimizing for large N_{θ}	$S^{\mathcal{B}}$	50	5.58	0.960	-3.73
		100	3.30	0.957	-1.26
		200	5.82	0.922	9.40
		360	13.45	0.802	86.85
FBP	$S^{\mathcal{B}} \cup S^{\mathcal{M}}$	50	$5.23 \cdot 10^{5}$	0.54	$-1.00 \cdot 10^{5}$
		100	$2.73 \cdot 10^{5}$	0.55	$-1.72 \cdot 10^5$
		200	$2.52\cdot 10^5$	0.55	$-1.81 \cdot 10^{5}$
		360	$2.52 \cdot 10^{5}$	0.55	$-1.82 \cdot 10^5$

https://bmvc2022.org/

The 33rd British Machine Vision Conference, London, UK