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Abstract

Computing image anomaly score from the maximum of the anomaly segmentation
prediction result has been widely adopted for end-to-end anomaly detection approaches.
However, slight discrepancy in predicted pixel-level anomaly scores for normal and
anomalous features often leads to high segmentation accuracy but unmatched poor detec-
tion performance. To overcome this problem, we propose a novel siamese-based U-Net
model based on a contrastive learning framework combined with deviation-based detec-
tion finetuning strategy. The model is trained to drag normal features together while
alienating the anomaly samples. Moreover, we introduce a novel channel-positional at-
tention module (CPAM) in our U-Net decoder for refined feature upsampling. Our model
reaches SOTA performance on the well-known 2D MVTecAD dataset and outperforms
all other methods on the challenging dataset MVTec3D-AD by a large margin.

1 Introduction

Anomaly detection and segmentation (AD&S) for industrial inspection is crucial in smart
manufacturing as it enables precise and non-stop supervision far beyond human’s capability.
The primary target of the AD&S tasks is to determine whether the input sample belongs
to the majority group or outliers of data points at either image- or pixel-level. With the
mainstream for AD&S tasks [11][6][20][13][4][7] to train models under an unsupervised
learning manner given defect-free data only, the normal-data-informed model is expected
to generate different and distinguishable representations corresponding to the normal and
anomalous data samples.

To allow end-to-end training and inference, existing methods tend to perform image-
level detection based on the segmentation results, such as determining image-level anomaly
based on the maximum of the anomaly map[4][13] or applying sliding windows on the seg-
mentation map[17]. Although these unsupervised, segmentation-dominated approaches have
reached excellent performance on the benchmark MVTecAD[8] dataset, they suffer from se-
vere performance drop when applied to more challenging cases, such as MVTec3D-AD[1].
Two main issues regarding the performance drop are summarized as follows.
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First, models trained in an unsupervised manner with normal data only are more likely
to produce high false positive/negative rates as they have no access to true anomalies[9].

Input Ours Groundtruth Input Ours Groundtruth Input Ours Groundtruth Input Ours Groundtruth

Figure 1: Visualization of the anomaly maps predicted by our model on MVTecAD[8](half-
left) and MVTec3D-AD[1](half-right).

Secondly, segmentation-dominated models are prone to produce indistinguishable image-
level anomaly scores for subtle anomalies. While the defects in MVTecAD[8] are mostly
bird-eye detectable, MVTec3D-AD[ 1] contains certain defects which look nearly the same
as normal from a single viewpoint, such as raise type in cookie. Slight discrepancy between
pixel anomaly scores for normal and anomalous features often results in indiscriminative
image-level anomaly scores, leading to poor anomaly detection performance.

To tackle the aforementioned issues, we propose a novel two-stage Siamese-UNet model
trained with contrastive learning and deviation finetuning for the AD&S task. Our primary
goal is to train a powerful U-Net decoder to extract representative and discriminative fea-
tures for AD&S. We construct our basic U-Net block based on the T-S U-Net proposed in
[4]. However, several improvements are introduced into our model and bring significant
performance improvements over [4].

In terms of contrastive learning, instead of following an unsupervised learning setup
as in [4], we adopt few anomalous samples to allow the model to effectively distinguish be-
tween positive and negative pairs from the feature learning. The model learns simultaneously
to produce similar representations for the normal samples and push the anomalous samples
away in a self-supervised fashion. Moreover, our proposed model is finetuned via a deviation
manner by mapping normal and anomalous features numerically to a corresponding bi-polar
scalar. Furthermore, we introduce a novel channel-positional attention fusion module, de-
noted as CPAM, which refines the feature extraction by applying attention mechanisms from
the channel and spatial aspects.

Abundant experiments are conducted on various experimental setups, including full-shot,
few-shot(16-shot) on benchmarks MVTecAD[8] and MVTec3D-AD[ 1] and also extended to
RGB-D detection on MVTec3D-ADJ[1]. Our contributions can be summarized as follows:

* We propose a robust Siamese-UNet model with a two-stage training process, first with
contrastive learning and followed by deviation finetuning, leading to more effective
feature learning.

* We introduce a novel attention fusion module CPAM, which is proven to significantly
refine features through the channel and spatial attentions.

¢ Our model provides SOTA accuracy on the benchmark MVTecAD[8] dataset and out-
performs all the other methods on the challenging MVTec3D-AD[1] dataset by a large
margin.
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2 Related Works

2.1 Anomaly Detection and Segmentation

Unsupervised learning that trains models with defect-free samples is the most adopted tech-
nique for existing anomaly detection methods, including normalizing-flow(NF)-based [20][5]
[13][12], embedding-based[17][11][6], and reconstruction-based approaches [4][7].

Normalizing Flow (NF) is a series of bi-directional transformations that map input sam-
ples into specific probability distribution and thus performs precise likelihood estimation
to detect out-of-distribution anomalies.[20][13][5][12] Embedding-based models expect a
well-trained network to extract meaningful features representing input images or patches.
The anomaly score can thus be calculated based on the embedding distance between the
reference and the input sample. However, the high computational cost often hinders these
approaches from being used in practice.[17][19]

On the other hand, variational autoencoder (VAE)[23], generative adversarial networks
(GAN)[7][14], transformer[10], or U-Net[4] are widely adopted reconstruction-based ap-
proaches. Trained with normal samples, these methods are prone to fail in anomalous pixel
restoration. Anomaly scores can therefore be determined based on pixel errors between
groundtruth and reconstructed images. However, these models’ high generalizability some-
times enables anomalous subregions reconstruction, resulting in inaccurate prediction.

Deng and Li [4] proposed a Teacher-Student U-Net framework, adopting reverse knowl-
edge distillation with a Teacher encoder, Wide-ResNet50 pretrained on ImageNet, and a Stu-
dent decoder. Unlike conventional reconstruction-based methods, this model[4] is trained to
minimize each layer’s feature-level difference between encoder and decoder, namely, to per-
form anomaly detection on the semantic feature space[4], which significantly improves the
performance of the reconstruction-based approach.

However, the segmentation-dominated methods that determine image-level anomaly scores
based on the maximum segmentation result share a common disadvantage: the model often
produces a similar anomaly score for anomalies which appears similar to normal. In such
conditions, slight discrepancy in predicted anomaly scores for normal and anomalous fea-
tures often leads to high pixel-level accuracy yet unmatched poor detection result.

2.2 Self-Supervised Representation Learning

Recently, self-supervised learning (SSL) has shown its excellent capability in terms of repre-
sentation learning without additional manual-labeled data. Tsai et al.[17] extended the SSL
tasks of relative patch position prediction proposed in [19] into a more accurate angle di-
rection of neighboring patches prediction, which is proven to improve model performance
significantly. Moreover, the trained-from-scratch approach [15] proposed a novel SSL task,
which first synthesizes anomalous samples via Poisson Image Editing and then trains the
model to pinpoint those anomalous regions. The performance of [15] even surpasses several
other methods that requires feature extractor for model training.

On the other hand, contrastive learning, targeting to drag normal features together while
deviating from anomalous, is another potential yet ignored SSL approach. The Contrasting
Shifted Instances (CSI) method [16] was proposed based on contrasting the original im-
age with distribution-shifted augmented samples. The contrastive predictive coding [3] is
a patch-level method focused on contrasting k patches in the same image with randomly
matched N-1 negative samples. However, the SSL tasks mentioned above often learn from
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defect-free samples only, which could encounter a performance drop or higher false positive
rate for more challenging tasks.

3 Proposed Method

3.1 Model Architecture

(a) Attention-enhanced T-S U-Net (b) Channel-Positional Attention Module (CPAM)
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Figure 2: (a) Overview of the basic T-S U-Net block, embedded with channel-positional at-
tention module (CPAM). Layerwise cosine similarity maps are aggregated as anomaly map.
(b) CPAM comprises two attention submodules, applying attention from channel and spatial
aspects.

3.1.1 Basic Block: Teacher-Student U-Net

Fig. 2 depicts the overview of the T-S U-Net architecture. Inspired by [4], we adopt the
reverse distilled Teacher-Student U-Net (T-S U-Net) architecture as the basic block for our
model. The T-S U-Net comprises a pretrained teacher encoder T and a student decoder S.
For each layer in the U-Net structure, S learns to mimic the pretrained 7 layerwise behavior
via restoring feature representation as similar as possible to the 7’s output embedding. Note
that in this structure, T is frozen with no weight updates, whereas decoder S is optimized
by the cosine similarity between the embedding from pretrained 7 and the restored feature
vector from § with the following loss function:

n
Leossim = — Z(l — cosine_similarity(T;, S;)) (1)
i=1

S

In eq.(1), 7; and S; represent the i-th layer output from the pretrained Teacher encoder 7 and
Student decoder S, respectively and # is the total number of layers in the U-Net structure.
During the inference phase, the anomaly map for each input sample can be computed by:

n

Mapomaly_map = Z(l — cosine_similarity(T;,S;)) 2
i=1

To enable more robust feature restoration, we further embed an attention module, denoted
as CPAM before every layer of the decoder S. Detailed description will be provided in the
following section.
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3.1.2 Channel-Positional Attention Module (CPAM)

To enable model learn from more robust feature representation, we refine the T-S U-Net via
embedding a novel channel-positional attention module within each decoder block, denoted
as CPAM. Fig.2 depicts the CPAM structure.

M.=Q®K, F =M.aV (3)
M.=Q®K, F,=M,oV “4)
Fepau =V QF, ®F, ®)

The channel and positional attentions are defined in eq.(3) and eq.(4), respectively. For chan-
nel attention, query, key, and value are first reshaped along the channel dimension, denoted
as O, K, and V. Hence, the inner-product from Q and K formulate the channel attention map
M., where M, and V are added as channel-attention refined feature vectors F. On the other
hand, we follow [22] for our positional attention mechanism, where Q, K, and V are first
reshaped with a 2D convolution operation. Likewise, the product of Q and K generates cor-
responding positional attention map M), and is added with original input vector as positional
attention-guided feature vector F,. We multiply F;, F,, and the input feature vector V to
derive the final CPAM-ed feature vectors for the following upsampling.

3.2 Model Flow: Two-Stage Training

Our model is trained in two consecutive stages. The first stage is a contrastive learning
process designed specifically for the anomaly detection task. The second stage is a deviation-
based detection finetuning process. Fig. 3 depicts an overview for each of these two stages
for training the proposed Siamese U-Net model. The details of these two stages will be
discussed in the subsequent subsections.

(a) Stage 1: Contrastive Learning for Siamese U-Net (b) Stage 2: Deviation-based Detection Finetuning
attention-enhanced 3-layer
T > decoded outputs 7 cos_sim(N;, Naug;)
Siamese U-Net ~ H = h .
N, it i-th layer Y attention-enhanced (—» decoded outputs
k Siamese U-Net
ion- 3-layer R L,
auggﬁ;zw_wgfd > decoded outputs / Lcontrastive deviation
Naug, i: i-th layer Y . T
Y attention-enhanced
3 — 4 3-layer
H Siamese U-Net > decoded outputs
attention-enhanced 3-layer v "
cos_sim(N;, A
l siamese U-Net . [ deittt‘d.e:ho‘:ytepru(s > _sim(N;, A)

Figure 3: Overview of our proposed two-stage training flow.

3.2.1 Stage 1: Contrastive Learning

To improve model representation learning and generalizability on unseen anomalies, we em-
ploy contrastive learning in a self-supervised manner incorporated with the basic T-S U-Net
block. Given a tuple of input sample consisting of a normal N, a random-rotated normal
Naug, and an anomalous sample A, we triplicate the basic T-S U-Net block to construct a
share-weight Siamese T-S U-Net. Note that Naug is the randomly rotated normal N, and
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anomalous sample A is sampled from the testing set, which we ensure no overlaps between
the training and testing set. In terms of contrastive learning, the model learns not only to
output similar feature representation for normal samples but also to ensure the similarity be-
tween normal and anomalous samples is never higher than any of the normal pairs. To this
end, we pair the outputs from the decoder with a positive and a negative pair. For positive
pairs, we collect layer-wise restored features from N and Naug, whereas features from N
and A are paired as negative pairs. The cosine similarity values for the positive and negative
pairs are compared in the following contrastive loss:

1 n
Leontrastive = — Z max(cos_sim(N;,A;) — cos_sim(N;, Naug;) + margin,0), 6)
niz

where N;, Naug;, and A; stand for the restored feature vectors from the i-th layer of the de-
coder for N, Naug and A, respectively, and cos_sim refers to cosine similarity. An additional
scalar margin ensures the similarity of the positive pair (V;, Naug;) is always larger than the
negative (N;, A;) by certain margin. In combination with the L,gsim, the overall loss for
stage-1 training can be formulated as:

Lsragel = )vconLcomrastive + )vcochossim (7)

3.2.2 Stage 2: Deviation-based Detection Finetuning

In the second stage, we finetune the model trained from stage-1 with a deviation strategy,
namely, to map normal and anomalous features numerically to the corresponding bi-polar
scalars to enhance the decoder with better representative feature restoration capability. Fine-
tuning requires an input set consisting of one normal and one anomalous sample, denoted as
(N, A). Note that the anomalous samples used at stage-2 are all sampled from the anomalies
employed in stage-1. The layer-wise outputs from the decoder are retrieved for deviation,
further optimized by the following deviation loss:

n

1
Laeviation = ; Z((l _y) |Sl| +ymax(0ap_ Si))7 (3)
i=1

where y stands for the image-level groundtruth label (0: normal, 1: anomalous), S; represents
the i-th layer decoder output, and p represents the the bi-polar scalar for anomalous samples
to be mapped to.

Fig. 4 illustrates how the anomaly synthesis module works. Following [15], the syn-
thesis process is to first crop a small patch Py, from the source image X, and then resize
it randomly, denoted as Py, and finally blend it on the destination image X, to generate
anomalous regions. TEXTURE and OBJECT synthesis for MVTecADI[8] differs slightly
since for OBJECT, selected patch must ensure not to include background. Synthesis process
is repeated several times to synthesize multiple types of anomalies. Note that image blending
performed on the same image, namely, X;,. is the same as Xy, is more likely to create too
subtle defects[15]. We make sure that in our anomaly synthesis process, Xy, and X, are
never duplicated.
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Figure 4: Anomaly Synthesis Module. The upper row depicts the synthesis steps for TEX-
TURE cases, whereas the lower row shows the synthesis steps for OBJECT classes based on
the MVTecAD[8] dataset. As for MVTec3D-ADJ[1], anomalies are synthesized according to
OBIJECT settings. The anomaly synthesis module is based on [15].

4 Experiments

4.1 Datasets and Evaluation Metrics

We conduct our experiments mainly on the two industrial inspection benchmarks, MVTecAD
[8] and MVTec3D-AD[1]. MVTecAD[8] consists of 5354 high-resolution RGB images from
15 real-world classes, with 3629 normal images for training and 1725 normal/anomalous im-
ages for testing. MVTec3D-AD[1] is a newly released 3D anomaly detection dataset, and
it comprises over 4000 high-resolution 3D samples for 10 products, with each sample con-
sisting of a RGB image, a set of organized point-cloud, and a 2D groundtruth. In our 2D
experiment setup, we take the MVTec3D-AD[1] as a 2D dataset, leveraging its RGB data for
model training without using the 3D geometric information. As our model training requires
some anomalous samples for training, 10 anomalous samples from the original testing set
for each product are randomly selected into the training set. Note that the selected anoma-
lous samples are the same for the two-stage training, and we ensure no overlaps on the
training and testing sets. We evaluate our model with image and pixel-level AUROCI8].
Moreover, since challenging cases usually contain subtle anomalies, where pixel-AUROC
is often dominated by the rest of the normal features, we report pixel-PRO[2] as another
performance evaluation, which is considered to be more informative for evaluating anomaly
detection performance.

4.2 Experimental Comparison

Anomaly Scoring: As depicted in the attention-enhanced T-S U-Net basic block in Fig.2,
we follow the way in [4] to obtain our anomaly segmentation results based on the upsampled
feature differences between layer-wise 7’s output and the restored feature maps S. The
maximum from the segmentation map is taken as the image-level anomaly score.

MVTecAD: Table 1 presents comparison of our method with other SOTAs on MVTecAD
[8]. To allow fair analysis, we compare our method with both reconstruction-based ap-
proaches [4] and methods adopting SSL[21][18][3]. Our model surpasses all competitors
and outperforms in most challenging classes, such as transistor and screw. Compared with
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Table 1: Comparison on MVTecADI[8] with full-shot training setting. AUROC% is reported
in the format of (image-level, pixel-level). Our results include two variants: trained with
a few (10-shot) real anomalies and with synthetic data, denoted as Ours(r) and Ours(s),

respectively.

PatchCore FastFlow CS-Flow | Reverse Distillation | DRAEM+SSPCAB RSTPM CPC-AD Ours(r) Ours(s)
carpet (-, -) (100.0,99.4) | (99.0,-) (98.9,97.0) (98.2,95.5) (-,99.0) (80.9,-) | (100.0,99.2) | (99.8,99.3)
grid (-, =) (99.7,98.3) | (100.0, -) (100.0, 99.3) (100.0, 99.7) (-,99.3) (98.3,-) | (98.0,99.3) | (100.0,97.7)
leather (- -) (100.0, 99.5) | (100.0, -) (100.0, 99.4) (100.0, 98.6) (-,99.0) (99.0,-) | (98.0,99.4) | (100.0,99.5)
tile (--) (100.0, 96.3) | (100.0, -) (99.3, 95.6) (100.0, 99.2) (-, 96.8) (957,-) | (99.5,95.9) | (99.1,99.5)
wood (-,-) (100.0, 97.0) | (100.0, -) (99.2,95.3) (99.5,96.4) (-,96.4) (80.3,-) | (100.0,95.6) | (98.3,95.7)
bottle (--) (100.0,97.7) | (99.8,-) (100.0, 98.7) (98.4,99.1) (-,98.9) (99.8,-) | (100.0,98.8) | (99.0,98.6)
cable (- -) (100.0,98.4) | (97.1,-) (95.0,97.4) (96.9,94.7) (-,97.6) (88.0,-) | (100.0,97.7) | (96.8,97.8)
capsule (-,-) (100.0,99.1) | (98.6,-) (96.3,98.7) (99.3,94.3) (-,98.9) (64.1,-) | (100.0,98.9) | (97.6,98.7)
hazelnut (--) (100.0,99.1) | (99.3,-) (99.9, 98.9) (100.0, 99.7) (-,99.1) (99.6,-) | (97.4,99.1) | (100.0,99.0)
metal_nut (- -) (100.0,98.5) | (99.7,-) (100, 97.3) (100.0, 99.5) (-, 98.6) (84.5,-) | (98.9,97.7) | (100.0,97.4)
pill (-,-) (99.4,99.2) | (99.1,-) (96.6, 98.2) (99.8, 97.6) (-,97.1) (92.1,-) | (99.6,98.5) | (96.9,98.0)
screw (--) (97.8,99.4) | (99.6,-) (97.0,99.6) (97.9, 97.6) (-,99.4) (89.7,-) | (100.0,99.7) | (97.5,99.4)
toothbrush (- -) (94.4,98.9) | (99.1,-) (99.5,99.1) (100.0, 98.1) (-,99.0) (87.8,-) | (98.0,99.1) | (99.2,99.0)
transistor (--) (99.8,97.3) | (97.6,-) (96.7,92.5) (92.9,90.9) (-, 88.1) (92.5,-) | (99.5,93.2) | (97.1,92.3)
zipper (-,-) (99.5,98.7) | (91.9,-) (98.5,98.2) (100.0, 98.8) (-,98.5) (99.3,-) | (98.7,98.8) | (97.8,98.1)
Total AVG | (99.6,98.4) | (99.4,985) | (98.7,-) (98.5,97.9) (98.9,97.3) (96.9,97.7) | (90.1,-) | (99.2,98.1) | (98.6,98.6)

Table 2: Comparison on MVTecAD[8] with few-shot(16-shot) setting. AUROC% is format-
ted as (image-level, pixel-level). Our model outperforms all listed approaches under extreme

condition, setting a new SOTA record.
CS-Flow | DifferNet | Reverse Distillation DRAEM NSA Ours(r)
Total AVG | (93.8, -) (83.6, -) (91.0,96.4) (92.3,86.2) | (90.7,92.8) | (95.1,97.3)

current SOTA[11][20], we reaches competitive performance. Table 2 briefly shows the su-
perior average accuracy of our method under the more extreme few-shot(16-shot) setup,
perfectly demonstrating our proposed model’s robustness and efficiency in feature represen-
tation learning under the few-shot setting.

MVTec3D-AD: To further assess the robustness and generalizability of our proposed method,
we compare our model with other SOTA methods on the more challenging 3D dataset
MVTec3D-AD[1] under a 2D experiment setup. Models are trained with RGB image data
only without using the additional 3D geometric information provided in the dataset. Our
model surpasses all competitors with over 16.7% and 7.4% performance improvements on
the average image and pixel-level AUROC scores, respectively. Notably, for the challenging
classes, specifically cookie, foam, and potato, in which the average image-AUROC from
the SOTAs reaches only 57.2%, 74.3%, and 55%, respectively, our model provides consis-
tently accurate results, achieving 83.2%, 93.5%, and 90.3%, respectively, for these object
classes.

4.3 Ablation Study

To provide more in-depth insights into our proposed framework, we conduct various ablation
studies on MVTec3D-AD[1] to verify the impact of each component in our model.

Impact of Attention Fusion Module To enable precise anomaly segmentation, the qual-
ity of the restored feature for each decoder layer is the decisive factor. To this end, a common
way for better feature representation learning is to refine features with an attention mecha-
nism. Table 4 briefly quantifies the influence on the embedded attention module CPAM in
our proposed method. On the top row of the left subtable of Table 4, we show that remov-
ing CPAM can directly lead to a significant performance drop in the overall AUROC score.
Moreover, in the right subtable of Table 4, we further investigate the influence of fusion
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Table 3: Quantitative comparison with SOTA methods on MVTec3D-AD[8] under 2D setup.
AUROC% is formatted as (image-level, pixel-level). Our results include trained with a few
(10-shot) real-world anomalies and with synthetic data, denoted as Ours(r) and Ours(s), re-
spectively.

PaDim PatchCore FastFlow CFlow DifferNet | CSFlow | Reverse Distillation Ours(r) Ours(s)
bagel (97.5,98.0) | (91.2, 89.9) | (89.3, 88.0) | (35.0,85.5) | (81.9,-) | (89.4,-) 96.2,99.1) 99.2,99.4) | (99.0,98.3)
cable gland | (77.5,94.4) | (90.2,95.3) | (62.0,75.2) | (85.8,91.9) | (67.0,-) | (91.7,-) (88.7,99.4) (100.0,99.4) | (91.9,97.8)
carrot (69.8,94.5) | (88.5,95.7) | (79.5,92.3) | (82.8,95.8) | (61.2,-) | (74.9,-) (94.2,99.5) (96.0,99.5) | (91.0,98.9)
cookie (58.2,92.5) | (70.9,91.8) | (42.6,81.2) | (56.3,86.7) | (48.4,-) | (66.8,-) (62.4, 98.0) (83.2,98.4) | (65.8,98.9)
dowel (95.9,96.1) | (95.2,93.0) | (88.0,92.9) | (98.6,96.9) | (63.4,-) | (93.8,-) (98.1,99.5) (98.5,99.6) | (98.4,99.2)
foam (66.3,79.2) | (73.3,71.9) | (72.8,64.6) | (73.8,50.0) | (68.9,-) | (89.7,-) (85.2,96.7) (93.5,94.9) | (83.1,82.9)
peach (85.8,96.6) | (72.7,92.0) | (65.1,78.2) | (75.7,88.9) | (65.5,-) | (60.3,-) (90.2, 99.4) (81.3,99.4) | (89.0,97.8)
Potato (53.5,94.0) | (56.2,93.7) | (56.0,61.5) | (62.8,93.5) | (60.0,-) | (41.9,-) (68.2,99.2) 90.3,99.3) | (66.8, 98.3)
Rope (83.2,93.7) | (96.2,93.8) | (98.2,91.3) | (97.0,90.4) | (72.9,-) | (97.1,-) (98.4,99.4) (92.4,99.6) | (98.8,96.6)
Tire (76.0,91.2) | (76.8,92.9) | (61.3,55.0) | (72.0,91.9) | (53.6,-) | (72.6,-) (73.0, 98.5) (98.6,98.9) | (81.2,94.1)
AVG (76.4,93.0) | (81.1,91.0) | (71.5,78.0) | (79.3,87.1) | (643, | (77.8,) (85.5, 98.8) 93.3,98.8) | (86.5,95.4)

module structure. We compare the performance with a different attention module variant
(CBAM). The result indicates that our CPAM can reach superior performance on all evalua-
tion metrics. Regarding image-level detection, CPAM outperforms CBAM by a 3.7% average
AUROC score. In short, Table 4 justifies that the incorporation of attention module into our
U-Net decoder can significantly improve the overall performance, and it also shows that the
proposed CPAM is a more suitable attention module compared to another variant in this task.

Input ours Baseline (RD) Groundtruth urs Baseline (RD) Groundtruth
®

Figure 5: Qualitative comparison between our method and the baseline Reverse
Distillation[4] on MVTecAD[8](left) and MVTec3D-AD[1](right).

Impact of Contrastive Learning: Table 4 shows the impact of contrastive learning in
our method. To compare performance without the stage-1 contrastive learning module, we
train our model with normal samples only, optimized by Lcssin in an unsupervised manner
with a single basic U-Net block. The large performance drops for all evaluation metrics
justify that the proposed SSL strategy is vital for the overall performance and provides better
feature representation learning.

Impact of Deviation Finetuning: We also explore the importance of the stage-2 deviation-
based finetuning in Table 4. Experiments indicate that performance of model without fine-
tuning drops significantly, especially on the anomaly detection AUROC score, which further
justifies our claim that pure segmentation-dominated approaches may fail to provide dis-
criminative feature restoration for challenging cases, leading to a significant reduction in the
image-level detection performance.
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Table 4: Ablation study for our method on MVTec3D-ADI[1]. The left sub-table justifies the
impact of each component in our proposed framework, whereas the right sub-table further
addresses on the influences regarding different attention fusion module structures. Image-,
pixel-level AUROC, and pixel-level PRO are reported as det, seg, and pro, respectively.

All Classes All Classes
Task det seg pro Task det seg  pro
Ours (w/o CPAM) 85.8 96.7 95.7 Ours (CBAM) | 83.6 98.7 96.0
Ours (w/o finetune) 87.3 98.8 96.5 Ours (CPAM) | 87.3 98.8 96.5
Ours (w/o Contrastive Learning) | 88.7 93.3 952
Ours 933 98.8 984

4.4 Qualitative Results

We visualize the anomaly segmentation results for several classes from MVTecAD[8] and
MVTec3D-AD[1] for qualitative comparison. Fig.5 shows that our proposed method can pre-
cisely localize and generate discriminative anomaly scores, regardless of the defects’ shapes,
sizes, or angles. For MVTecAD[8] results on the left half of Fig.5, our model localizes more
precisely than the base tire on the top row of the right-half of Fig5, our model can still
generate a reliable anomaly map due to the aid of the deviation finetuning. Without devi-
ation finetuning, the baseline tends to falsely predict the background with a high anomaly
score. Notably, even though several occluded anomalies in MVTec3D-AD[ 1] are hard to
be detected with limited RGB information, the highlighted anomalous area still proves the
robustness of our model of pinpointing those defects areas in all cases.

5 Conclusion

In this paper, we proposed a novel Siamese U-Net model trained with a two-stage learning
strategy, i.e. contrastive learning and deviation finetuning. Our model includes a novel at-
tention fusion module CPAM into U-Net to refine image representation learning for anomaly
detection and segmentation. Extensive results demonstrate that our proposed method can not
only achieve SOTA performance on the benchmark dataset, but also improve robustness and
generalizability that bring outstanding performance on more challenging experiment setups,
including few-shot (16-shot) on MVTec[8] and RGB anomaly detection and segmentation
task on MVTec3D-AD[1].
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