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(a) Overview of the T-S U-Net block embedded with channel-positional attention module (CPAM).  Layerwise cosine similarity maps are 
aggregated as anomaly map. (b) CPAM comprises two attention submodules, applying attention from channel and spatial aspects.

(a) Stage 1: Contrastive Learning (b) Stage 2: Deviation- based Detection Finetuning

Tab 1: Comparison on MVTecAD with full-shot training 
setting. AUROC% is reported in the format of (image-level, 
pixel-level). Our results include two variants: trained with a 
few (10-shot) real anomalies and with synthetic data, 
denoted as Ours(r) and Ours(s), respectively.

Tab 2: Quantitative comparison with SOTA methods on 
MVTec3D-AD under 2D setup. Our results include trained 
with a few (10-shot) real-world anomalies and with 
synthetic data, denoted as Ours(r) and Ours(s), respectively. 

Fig 1: Qualitative comparison between our method and the 
baseline Reverse Distillation on MVTecAD (left) and 
MVTec3D-AD (right).  For challenging case “tire” on the top 
row of the right half, our model can still generate a reliable 
anomaly map due to the aid of the deviation finetuning. 
Without deviation finetuning, the baseline tends to falsely 
predict the background with a high anomaly score. 

Mainstream approaches for anomaly detection and segmentation task in smart manufacturing usually suffer from two main issues
 High FPR/FNR: Models trained with normal data only  in an unsupervised manner are more likely to produce high false positive/

negative rates as they have no access to true anomalies
 Indiscriminative image-level anomaly score: Segmentation-dominated models are prone to produce indistinguishable image-

level anomaly scores for subtle anomalies.  Slight discrepancy between pixel anomaly scores for normal and anomalous features 
often results in indiscriminative image-level anomaly scores, leading to degraded anomaly detection performance. 


To tackle the aforementioned issues, we propose a novel Siamese U-Net model trained with contrastive learning and deviation 
finetuning, incorporating a few anomalous samples, either real-world anomalies or synthetic samples, into model training. 

Model Architecture

Model Flow: Two-Stage Training


